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Objective: Validate text fields for medication 
names

• Develop NLP-based methods to detect and correct medication name 
errors 

• Create a validation set to measure the accuracy of NLP-based 
methods

• Assess the error rate in the medication_name field of the LTCDC 
dataset
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NLP methods for error detection
• Create training/development/test sets from RxNorm drug names

‒ Negative instances: RxNorm generic and branded drug names

‒ Positive instances: drug names with automatically generated typos

• DrugBERT and charDrugBERT
‒ finetuned Medical BERT and Medical Character BERT using training and development sets

• Spellchecker (baseline)
‒ knowledge-based, dictionary extended with drug names from training and development 

sets



LTCDC data used for creating the validation set

Resources: https://www.ltcdatacooperative.org/

Database Ltcdc-20231215 Ltcdc-20240523
# of unique medication 
names

103,385 115,381

Freq <= 1 73082 (71%) 79023 (68%)
Freq <= 2 81520 (79%) 88507 (77%)
Freq <= 20 95113 (92%) 105760 (91%)
Freq <= 100 99132 (96%) 109813 (95%)



Validation set 1 derived from LTC medication 
names
• 2000 single-word medication names randomly chosen from the 

medication_name field of the ltcdc_20231215 database
‒ 1500 : occurred 1 or 2 times in the database

‒ 500 : occurred >1000 times in the database

• Using a semi-automatic method to identify errors from medication names
‒ 1500 low-frequency names: reviewed in two rounds by the research team

‒ 500 high-frequency names: verified using the Google search API spell check
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Validation set 1 derived from 2000 LTC medication names

Data N (%) Examples Note

Total 2000 (100)

High frequency drug name 
(Correct)

500 (25) Flexitol
Cozaar
Nizoral

Verified by Google search API 
spell checking

Correct drug name 569 (28.5) Tranzarel
Dacogen

Found on official websites

Correct short drug name 50 (2.5) LIDO/ALUMINUM/SIMET
glucosamine/chondr/msm

Found on official websites but 
not standard drug name

Misspelled drug name 742 (37.1) levison -> levsin
Ketocanozole -> Ketoconazole
Ducolox -> Dulcolax

Used google search suggestion 
to find the correct drug name

Correct non-drug name 65 (3.3) Starch
Gentle

Misspelled non-drug name 13 (0.7) Adenovir -> adenovirus

Not Sure 61 (3.1) Wabana
Dukes

Anything not in the other 
categories 9



Validation set 2 derived from LTC medication 
names
• 2000 medication names chosen from the medication_name field of the 

ltcdc_20240523 database using weighted random sampling

• Using a semi-automatic method to identify errors from medication names
‒ low-frequency names (prescribed for  <100 patients): reviewed in two rounds 

by the research team

‒ high-frequency names (prescribed for at least 100 patients): verified using the 
Google search API spell check
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NLP performance on error detection, using LTC validation 
sets 1 & 2

Metric spellChecker (M1), 
mean (std)

charBERTDrug (M2), 
mean (std)

BERTDrug (M3), 
mean (std)

Precision 0.489 (0.006) 0.600 (0.008) 0.605 (0.012)
Recall 0.961 (0.003) 0.787 (0.019) 0.741 (0.025)
F1 0.648 (0.005) 0.681 (0.007) 0.666 (0.008)
Accuracy 0.570 (0.005) 0.695 (0.005) 0.693 (0.007)
Specificity 0.296 (0.006) 0.631 (0.015) 0.659 (0.023)
ROC AUC 0.628 (0.004) 0.749 (0.006) 0.763 (0.006)
PR AUC 0.486 (0.006) 0.606 (0.010) 0.653 (0.010)



Rule-based NLP for error detection in LTC 
workspace
• Using words from high frequency medication names (i.e., prescribed 

for 100 or more patients) to derive the dictionary used by NLP 
spellchecker

• Multiprocessing, using 2 processors

• 7 seconds to process 109790 medication names from 
ltcdc_20240523 that were prescribed to 1-99 patients



Error rate of LTCDC medication names, estimated 
by NLP vs. LTC validation set 2 (manual + google)

Medication Names Total N (medication x 
person)

Estimated No. of errors (error rate)

NLP LTC validation set 2
ordered or 
administered

36,931,407 217,173 (0.0059) 223,301 (0.0060)

ordered and 
administered

36,638,634 151,332 (0.0041) 154,691 (0.0042)

ordered 292,773 65,841 (0.2249) 75,447 (0.2577)
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Rule-based NLP for error correction in LTC 
workspace

• Multiprocessing using 3 processors

• Using rules to exclude certain words (e.g., 200 mg, CVS) from the input of the 
NLP spellchecker

• 45 min – 1hr for processing and correcting 10000 medication names from 
ltcdc_20240523

• Processed 109790 medication names (prescribed to 1-99 patients) in ~11hr 
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Objectives
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• Determine the type and frequency of functional assessments in the LTC 
Data Cooperative

• Provide a brief overview of how functional assessments in the Minimum 
Data Set 3.0 have evolved since 2010

• Evaluate methods for cross-walking new Section GG measures in the MDS 
3.0 to old Section G measures



An overview of assessment types
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Assessment 
types

Short for… Measure of Count (in 103)

MDS3 Minimum Data Set 3.0 Comprehensive 6,683
ADL Activity of Daily Living Function 2,821
FS Function Score Function 2,100
CPS Cognitive Performance Scale Cognition / Function 2,100
CAM Confusion Assessment Method Delirium 2,100
BIMS Brief Inventory of Mental Status Cognition 1,737
PHQ-9 Patient Health Questionnaire Depression 1,607
PHQ-9-OV Patient Health Questionnaire Depression 

(observed)
188

Data from 02/2024



The ADL and FS assessments are (mostly) derived from the 
MDS
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• The ADL assessment comes from the Care Assessment Area (CAA), 
where SNFs should respond to identified problems with ADLs

• The FS assessment (from 0-16) likely refers to the RUG-IV ADL 
score, which is derived from functional measures in the MDS for 
bathing, transfers, eating, and toileting

• >99% assessments co-occur (share a date) with an MDS



Functional measures within the MDS have changed 
over time
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Year MDS 
Version

Section G Section 
GG

Major change

Pre 2010 2.0 ✓ Original Section G from which the MDS-ADL (1999) was created

2010 3.0 V1.04 ✓ MDS 2.0 to MDS 3.0 (to improve clinical relevance, accuracy, validity, more resident voice)

2016 3.0 V1.14 ✓ ✓
Added Section GG for SNF PPS (prospective payment system for rehab, admission vs. 
discharge performance & goals for: eating, oral hygiene, toileting, sit to lying, lying to 

sitting, sit to stand, chair transfer, toilet transfer, 50ft, 50ft & 2 turns, 150ft)

2017 3.0 V1.15 ✓ ✓

2018 3.0 V1.16 ✓ ✓
Added prior function (self-care, mobility, stairs, cognition) and device use, added 

activities (shower/bathing, upper dressing, lower dressing, footwear, roll left and right, 
car transfer, 10ft uneven, 1 step, 4 steps, 12 steps, picking up objects) 

2019 3.0 V1.17 ✓ ✓ Added interim performance for status updates

2023 3.0 V1.18 ✓ Section GG only, including for SNF OBRA assessments, added activities on 
admission/discharge (personal hygiene, tub/shower transfer)

2024 3.0 V1.19 ✓ Functional limitation in ROM
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Changing measures present challenges for research

• New scale (Section GG) as of October 2023

• Changing items within that scale as it was being implemented

• Changing indications for when that scale should be completed

• Cannot construct longitudinal cohorts / longitudinal outcomes

• Unclear how to interpret Section GG compared to previous Section G 
scores

• Risk of instability over time as function is linked to payment



Over time, more facilities have joined the LTC Data 
Cooperative
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We thus have many Section G and Section GG 
measurements during the implementation period
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Can we use assessments 
conducted on the same 
people at the same time 
to cross-walk scores? 
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Comparing four methods to cross-walk scores

1. Scaled summary score 2. Item-based coding

3. Equipercentile method 4. Item response theory-based methods
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How do we visualize how well each method works?

• Bland-Altman plots show the 
difference between the cross-
walked & actual score vs. the 
mean of the scores

• Bias = mean difference

• LOA = level of agreement; 
95% of the time, the cross-
walk produces a difference 
less than this range



Overall comparison of methods
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Method
Spearman 
correlation Bias

Level of 
agreement

Scaled summary 
score

0.704 -3.50 8.08

Item-based coding 0.692 +0.06 7.77

Equipercentile 0.700 -0.03 8.13

Item response theory 
(Stocking-Lord)

0.694 0.00 7.59



So it really is not easy to reliably cross-walk Section 
GG to Section G
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• Tests of fit (confirmatory factor analyses, exploratory factor analyses) 
do not clearly indicate that Section GG items and Section G items 
measure the same thing

• The overall Section GG score produces greater differences than 
Section G when it should not



Section GG differs more for discharge assessments 
and after PDPM
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Next steps…
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• Explore why Section GG does not cross-walk well to Section G 
(exploratory factor analyses, factor loadings, differential item 
functioning)

• Publish guidance on how to handle longitudinal Section GG 
functional measures for research as an outcome measure for 
comparative effectiveness research

• Will especially need an approach as quality-based payments for discharge 
function score are being implemented, which may further introduce problems 
for validity

• For future studies, should we abandon a single scale for function?
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Background and objectives
• Accurate assessment of cognitive functioning in nursing home residents is crucial 

for:
‒ Appropriate care planning
‒ Monitoring of quality of care
‒ Identifying populations of interest for research purposes

• Objective: To examine whether and under what circumstances EHR data on 
nursing home residents provides useful cognitive status information above and 
beyond what is available through the MDS

‒ Describe the EHR cognitive assessment data across time, facilities, and resident populations
‒ Examine the validity of the EHR cognitive assessment data
‒ Examine within resident variation in cognitive functioning over time



Cognitive assessment validation findings
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Types of cognitive assessments in the EHR data: BIMS, CPS, and CAM

80.1% of cognitive assessments in the EHR 
data occur on the same day as an MDS 
assessment

16.7% occur on a different day, but within 
the reference period of an MDS assessment

3.2% occur outside of the reference period Only BIMS are usable

~90% agreement on score, but CAM 
assessments in EHR systematically 
miss delirium captured in the MDS

~99% agreement on score, but CAM 
assessments in EHR systematically 
miss delirium captured in the MDS



Pivot to new objectives
• Delirium is understudied in the nursing home setting
• Extant literature 

‒ Dated
‒ Based on small, non-generalizable samples
‒ Focuses on newly admitted post-acute care patients

• Objectives:
‒ Describe CAM data among short and long stay residents
‒ Determine prevalence of delirium among short and long stay residents
‒ Explore clinical correlates of incident delirium within each population



MDS assessments in the EHR data
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Short stay episode assessments
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2.8% of CAMs conducted as part of an admission assessment were positive for delirium



Short stay episodes
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Long stay episode assessments
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Long stay episodes
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Long stay episodes
• For residents with “incident” or “fluctuating” delirium, 8.3% of delirium 

positive assessments were preceded by a hospitalization
• Mortality

‒ Ever:
• Long stay episodes where delirium was detected – 21.5%
• Long stay episodes where delirium was not detected – 13.3%

‒ Within 1 year of admission:
• Long stay episodes where delirium was detected within the first year – 13.5%
• Long stay episodes where delirium was not detected within the first year – 8.4%



Next steps
• Stratify by dementia status

• For long stay episodes, examine medications initiated within the 2 weeks 
prior to incident delirium
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Why Diabetes?
• Approximately 25-34% of nursing home residents have diabetes (Munshi 

et al., 2016).

• Diabetes is associated with significant disease burden and higher cost.
‒ Diabetes-attributable nursing home costs were $9.6 billion and total nursing 

home costs of diabetic patients were $30 billion in 2022 (Parker, et al., 2024).



Why Diabetes?
• Challenges of diabetes management in nursing homes (Pandya et al., 2020; 

Idrees et al., 2022).
‒ Extensive and heterogenous comorbidities
‒ ADL dependence
‒ Inadequate diabetes education for staff
‒ High risk for severe hypo- and hyperglycemia
‒ Variation in practices

• Data limitations have been a significant barrier for studying diabetes 
management in nursing homes

‒ MDS file has limited information about diabetes.



Objective
• Identify data elements relevant to type 2 diabetes (T2D) in LTC Data 

Cooperative EHR.

• Assess quality and consistency between different data elements.

• Assess consistency between information from EHR and MDS.

• Compare the results to other similar studies focusing on T2D in nursing 
homes.



Key Findings: T2D Data and Availability
• Various data elements relevant to T2D are in different data tables.

Data Tables Data Elements Availability

Condition ICD-9/10 diagnosis codes; Diagnosis descriptions Very well populated.

Episode ICD-9/10 diagnosis codes (both admission and discharge 
diagnoses); Diagnosis descriptions

Very well populated; use both admission and discharge diagnosis 
codes.

Medication 
Administration Medication generic name; Medication name Medication name column has both generic and brand names. Need 

to account for spelling idiosyncrasies.

Medication Order NDC; Medication generic name; Medication name;
Medication class code description

NDC is not well available. Medication name column has both 
generic and brand names. Need to account for spelling 
idiosyncrasies.

Observation Lab LOINC; Observation event code description; Observation 
result name

Very well populated. Need to be cautious about results and the unit 
of results.

MDS I2900: Active Diagnoses: Diabetes Mellitus (DM) Code
N0350A: Number of Days Insulin Injections Very well populated



Key Findings: Agreement between EHR Elements
• % of residents with T2D identified by 

different EHR elements.
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Key Findings: Agreement between EHR Elements
• Among all residents with a T2D dx, % with ≥ 1 lab indicator, ≥1 medication, or 

both 
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Key Findings: Agreement between EHR and MDS
• % of residents with T2D identified by EHR versus 

MDS.
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Key Findings: Use of Medication
• Among residents with T2D who were prescribed any oral glucose-lowering medication, metformin 

has been the most common one and SGLT2 inhibitor use has been growing. Patterns are 
consistent with a prior study.
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Key Findings: Use of Medication
• Among residents with T2D who were prescribed any injectable glucose-lowering medication, the 

use of GLP-1 RA has been growing.
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