

Decision Architecture Randomization Trials: Extremely Low-Cost Trials with Preservation of Clinician and Patient Choice

James Flory, MD, MSCE

Assistant Attending Physician, Endocrinology Service, Memorial Sloan Kettering Cancer Center

Housekeeping

- All participants will be muted
- Enter all questions in the Zoom Q&A/chat box and send to Everyone
- Moderator will review questions from chat box and ask them at the end
- Want to continue the discussion? Associated podcast released about 2 weeks after Grand Rounds
- Visit impactcollaboratory.org
- Follow us on Twitter & LinkedIN:

@IMPACTcollab1 https://www.linkedin.com/company/65346172

No Conflicts of Interest

Learning Objectives

Upon completion of this presentation, you should be able to:

- Define 'nudges', 'decision architecture', and 'A/B testing'
- Describe a decision architecture randomization trial (DART)
- Understand how DART relates to other pragmatic clinical trial designs

Randomized Trials are Challenging to Conduct

- Average cost estimated at > \$10,000 per patient
- < 30% of phase 3 trials meet accrual goals</p>
- Take up providers' and patients' limited time
- Disrupts routine care
 - Especially if patient prefers treatment A and is randomized to treatment B

Vickers AJ. Clinical trials in crisis: Four simple methodologic fixes. Clinical trials (London, England).
Cheng SK, Dietrich MS, Dilts DM. Clin Cancer Res. 2010;16(22):5557.
Dilts DM, Sandler AB, Baker M, et al. J Clin Oncol. 2006/10/01 2006;24(28):4553-4557.
Speich B, von Niederhäusern B, Schur N, et al. Journal of Clinical Epidemiology. 2018/04/01/ 2018;96:1-11.
Lee SJC, et al. Conceptual Model for Accrual to Cancer Clinical Trials. J Clin Oncol. 2019 Aug 10;37(23):1993-1996.

Pragmatic Designs Help But Are Still Big Undertakings

- Focus on standard of care treatments delivered through normal processes
- Use of routinely collected data
- Cluster randomization

• But, we still need far more high-quality evidence than we can get

https://www.pcori.org/research-results/2015/comparing-two-aspirin-dosesprevent-heart-attacks-and-strokes-people-living-heart-disease-adaptable-study

Bynum JPW et al. J Am Geriatr Soc. 2020 Jul;68 Suppl 2(Suppl 2):S49-S54 Brody A, Durga A, Ford A, Lin SY. Innov Aging. 2022 Dec 20;6(Suppl 1):172.

A/B Testing As a Pragmatic Trial Design

News organizations often randomize to two different versions of a headline

Vs.

"SOUL-SEARCHING IN BALTIMORE, A YEAR AFTER FREDDIE GRAY'S DEATH"

"BALTIMORE AFTER FREDDIE GRAY: THE 'MIND-SET HAS CHANGED'"

A/B Testing As a Pragmatic Trial Design

News organizations often randomize to two different versions of a headline

Vs.

"SOUL-SEARCHING IN BALTIMORE, A YEAR AFTER FREDDIE GRAY'S DEATH"

"BALTIMORE AFTER FREDDIE GRAY: THE 'MIND-SET HAS CHANGED'"

Readership 17 x greater

https://www.nytimes.com/2016/06/13/insider/which-headlines-attract-most-readers.html

Often, A/B Testing is Used to Study Nudges

- Nudges make you more likely to do something but don't force you to do it
 - A headline that makes you want to read an article
 - Making one option the 'default'

Horwitz LI, Kuznetsova M, Jones SA. Creating a learning health system through rapid-cycle, randomized testing. N Engl J Med 2019;381:1175–9.

Nudges Can Change Prescribing Decisions

Adding H2 blockers to an order set increased use by 20%

Malhotra S et al. J Am Med Inform Assoc. 2016 Sep;23(5):891-8. Raban MZ et al. J Am Med Inform Assoc. 2023 Jun 20;30(7):1313-1322. Bourdeaux CP et al. BMJ Qual Saf 2014; 23 (5): 382–8. Muniga ET, Walroth TA, Washburn NC. Appl Clin Inform. 2020 Jan;11(1):182-189.

Nudges Can Change Prescribing Decisions

Adding chlorhexidine mouthwash as default to an order set increased use by 35%

Making generic prescribing the default in order entry system increased use of generics by 56%

Malhotra S et al. J Am Med Inform Assoc. 2016 Sep;23(5):891-8. Raban MZ et al. J Am Med Inform Assoc. 2023 Jun 20;30(7):1313-1322. Bourdeaux CP et al. BMJ Qual Saf 2014; 23 (5): 382–8. Muniga ET, Walroth TA, Washburn NC. Appl Clin Inform. 2020 Jan;11(1):182-189.

Order Sets, Decision Architecture, and Nudges

Vs.

Eating	Clear
Eating	
C Fasting NPO	
C Tube Feeding Continuous	

Insulin Dose	Long-Acting Insulin	
Resistant - Use for obese body type, taking steroids Clear	Insulin detemir (Levemir)	Clear
C Sensitive - Use for Type 1 Diabetes, lean body type, elderly, renal insufficiency, pancreatectomy	C None	
C Average - Use for average or overweight body type	 Insulin detemir (Levemir) 	
Resistant - Use for obese body type, taking steroids	C Insulin glargine (Lantus)	
C Custom		

Johnson EJ. The elements of choice: why the way we decide matters. New York: Riverhead Books, an imprint of Penguin Random House LLC, 2021: 390.

Thaler RH, Sunstein CR. Nudge: the final edition. New Haven: Yale University Press, 2021: 366.

Order Sets, Decision Architecture, and Nudges

Nutritional Status	Insulin Dose	Long-Acting Insulin
Eating Clear	Resistant - Use for obese body type, taking steroids Clear	Insulin detemir (Levemir) Clear
 Eating 	C Sensitive - Use for Type 1 Diabetes, lean body type, elderly, renal insufficiency, pancreatectomy	C None
C Fasting NPO	C Average - Use for average or overweight body type	 Insulin detemir (Levemir)
C Tube Feeding Continuous	Resistant - Use for obese body type, taking steroids	C Insulin glargine (Lantus)
	C Custom	

Example of a Nudge

- There are two kinds of long-acting insulin at our hospital
- The one that is prechecked may be more likely to be given

Example of a Nudge

- There are two kinds of long-acting insulin at our hospital
- The one that is prechecked may be more likely to be given

Orderset A

Long-Acting Insulin

Insulin detemir (Levemir)

O None

- Insulin detemir (Levemir)
- Insulin glargine (Lantus)

Insulin A prescribed to 75%

Insulin B prescribed to 25%

Random Assignment to Orderset

Random Assignment to Orderset

Orderset A

Long-Acting Insulin

Insulin detemir (Levemir)

O None

- Insulin detemir (Levemir)
- Insulin glargine (Lantus)

Orderset B

Long-Acting Insulin

Insulin glargine (Lantus)

O None

- Insulin detemir (Levemir)
- Insulin glargine (Lantus)

Insulin A prescribed to 75%

Insulin B prescribed to 25%

Ethics and Nudges

Routine Care

Patient/Provider Prefer A

Patient Receives A

Patient/Provider Have No Preference

Patient Receives A or B (based on arbitrary factors)

Patient/Provider Prefers B

Patient Receives B

Traditional Randomized Trial

Patient/Provider Prefer A

Randomized to A

Patient/Provider Have No Preference

Patient/Provider Prefers B

Kim SY, Kimmelman J. Practical steps to identifying the research risk of pragmatic trials. Clin Trials. 2022 Apr;19(2):211-216.

Patient/Provider Prefers B

Nudged Towards A

Patient/Provider Have No

Preference

Patient/Provider Prefer A

Patient Receives A

'Nudge' Trial

Decision Architecture Randomization Trial

- **Decision architecture**: design choices (e.g., in electronic health records) that affect decision-making
- Decision architecture used to deliver a nudge: non-coercive effect making a certain decision more likely
- Use of nudges enables A/B testing: unobtrusive, highly scalable randomized trials

Analysis of Traditional RCT

Analysis of a DART

Relative Pros and Cons of DART Design

Traditional Randomized Trial	DART
Changes process of care	Imperceptibly integrated into usual care
Patient & clinician must accept randomly assigned treatment	Patient & clinician freely choose treatment
High cost per additional patient accrued	Potentially no cost per additional patient accrued
Smaller sample size	Larger sample size

Other Limitations of DART

- Interventions must all be in routine use
- Requires an appropriate nudge that can be randomized
- Assumes baseline characteristics and outcomes can be found in routinely collected data
- Individual patient informed consent likely to be impractical

DART in the Real World

The Great Wave off Kanagawa, Hokusai

DART in the Real World

PCORI Methodology Contract

- Aim 1: Ethics and stakeholder acceptability
- Aim 2: Statistical and technical feasibility
- Aim 3: Pilot DART study

Can A/B Testing Be Adapted into an Ethical and Useful Approach to Patient-Centered Outcomes Research?

Sign Up for Updates

Project Summary

Doctors and other healthcare providers make many decisions when they are not sure what choice is best for their patients. For example, when a prescriber chooses between two slightly different diabetes drugs, they may be unsure which drug is best. An example is choosing between two different types of long-acting insulin, where prescribers know that both work well but think one might be slightly better than the other.

For these kinds of questions, the only way to get a reliable answer on what is best for the

Flory J, Ancker JS, Kim SYH, Kuperman G, Vickers A. Decision architecture randomisation: extremely efficient clinical trials that preserve clinician and patient choice? BMJ Evid Based Med. 2023 Jul 21:bmjebm-2023-112386. doi: 10.1136/bmjebm-2023-112386. Epub ahead of print. PMID: 37479243.

Aim 1: Ethics and Acceptability

- Many DARTs may meet criteria for waiver of traditional informed consent
 - Minimal risk
 - Impracticability with traditional consent
- The scalability of DART should be considered

Moving slowly, not breaking anything

- Facebook used A/B testing to randomize 689,003 people to positive versus negative emotional content in their feeds
- LinkedIn used A/B testing on over 20 million people to compare the effectiveness of 'strong' and 'weak' ties for finding employment
- Both projects were published in high-impact scientific journals
- Both projects attracted concern over research oversight and ethics

Verma IM. Editorial expression of concern. *Proceedings of the National Academy of Sciences of the United States of America*. 2014;111(29):10779-10779. Kramer AD, Guillory JE, Hancock JT. Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8788-90. <u>https://www.nytimes.com/2022/09/24/business/linkedin-social-experiments.html</u> Rajkumar K, et al. A causal test of the strength of weak ties. Science. 2022 Sep 16;377(6612):1304-1310.

Stakeholder Engagement

Co-Investigators

- 5 academic researchers
- 3 patient advocates

Diabetes Team

Memorial Sloan Kettering

- 2 MD/DO clinicians
- 2 APP clinicians
- 1 Registered Dietician
- 2 Registered Nurses/Clinical Diabetes Educators

Stakeholder Advisory Board

Coordinated through Vanderbilt and STAR Clinical Research Network

- 3 patient advocates
- 2 clinicians (1 informatician)

Patient and Family Advisory Council for Quality, Memorial Sloan Kettering

Qualitative Research

- 100 members of general public
- 25 institutional review board members
- 25 clinicians

Stakeholder Engagement: Next Steps

- Moving forward with deliberative democratic sessions with 150 participants
 - Also includes pre-post survey of each participant
- Goals
 - Identify stakeholder concerns about DART
 - Identify potential solutions
 - Including appropriate constraints on how/when DART is done

Aim 2: Technical Feasibility

Example: Two Insulin Dosing Paradigms

Sliding Scale Only	Fixed + Correction
Give insulin based just on blood sugar	Adds fixed dose before meals
Simpler	More complex
	Preferred by expert guidelines (but little evidence cited)

Nuha A. ElSayed, et al; on behalf of the American Diabetes Association, 16. Diabetes Care in the Hospital: *Standards of Care in Diabetes — 2023. Diabetes Care* 1 January 2023; 46 (Supplement_1): S267–S278.

Feasibility: Preliminary Findings

- We can create appropriately strong nudges in our electronic health record
- Close partnership with informatics service is essential
- Randomized or pseudo-randomized deployment of nudges really is needed to draw firm conclusions

Feasibility: Next Steps

- Stepped wedge designs may to be the easiest way to implement DART in many cases
- We are developing approaches to individual patient or provider-level randomization

Aim 3: DARTs Under Development

- **Question:** Which is the better long-acting insulin for hospitalized cancer patients?
- Nudge: Default selection in an order set
- Randomization: Stepped wedge
- Outcome: Glucose control, length of stay

Aim 3: DARTs Under Development

- Question: Does tighter glycemic control reduce surgical site infections in colorectal surgery patients?
- Nudge: Default selection of correctional insulin in post-surgical order set
- Randomization: Individual at level of patient
- Outcome: Surgical site infection rate

Aim 3: DARTs Under Development

- **Question:** Does referral to a registered dietician improve outcomes in patients with newly diagnosed type 2 diabetes?
- **Nudge:** One-click option for nutrition service referral in new visit notes
- Randomization: Individual at level of provider
- Outcome: Glucose control, rate of antidiabetic medication use

Conclusions

- DART is a novel pragmatic trial design intended to:
 - Reduce risk and preserve patient choice
 - Bring the scalability and simplicity of A/B testing to comparative effectiveness research
 - Compare two (or more) standard of care interventions
- Implementation depends on the ability to deliver a randomized nudge (usually through an electronic health record) in a way that is
 - Reasonably strong
 - Not disruptive to care
 - Acceptable to stakeholders

Acknowledgments

Researcher Collaborators

- Jessica Ancker
- Scott Kim
- Gil Kuperman
- Andrew Vickers

Stakeholder Collaborators

- Jo-Nette Boyd
- Guedy Arniella
- Kate Niehaus

Friends of the Project

- Everett Weiss
- Kimberly Gould
- Peter Stetson
- Patricia Adem
- Jun Mao
- Patient and Family Advisory Council for Quality
- Clare Relton
- Jason Karlawish

Research Staff

- Mia Austria
- Isabelle Grillo
- Michele Levy

MSK Diabetes Team

- Amy Hiestand
- Samantha Fazio
- Ritika Chitkara
- Ruben Diaz
- Christina Stella

Funding Acknowledgment

Funding from the Patient Centered Outcomes Research Institute (ME-2022C1-26378) is gratefully acknowledged.

Questions?

IMPACTcollaboratory.org

