NIH Collaboratory

Health Care Systems Research Collaboratory

Rethinking Clinical Trials®

Topic 4: Design and Analytic Considerations

Liz Turner, PhD Department of Biostatistics & Bioinformatics and Duke Global Health Institute Duke University School of Medicine

Collaboratory ePCT Training Workshop

Overview

- Randomization schemes: cluster vs individual
- Cluster-randomized trials (CRTs)
 - 1: Special considerations for CRTs
 - Clustering of outcomes
 - Small # of clusters
 - 2: Varieties of cluster-randomized trials
 - Parallel
 - Stepped-wedge
- Other considerations
- How do I know I have the right statistician?

ePCTs: to inform decision-making

Considerations in ePCT design

- Why randomize?
 - Internal validity (ie, comparability of treatment and control arms)
- How to randomize?
 - Individual vs cluster
- Also want good external validity
 - Generalizability
 - Think carefully about eligibility

Overview

- Randomization schemes: cluster vs individual
- Cluster-randomized trials (CRTs)
 - 1: Special considerations for CRTs
 - Clustering of outcomes
 - Small # of clusters
 - 2: Varieties of cluster-randomized trials
 - Parallel
 - Stepped-wedge
- Other considerations
- How do I know I have the right statistician?

Randomization schemes

- Cluster vs individual
- Explanatory trials
 - Usually randomize individuals patient
- Pragmatic trials
 - Usually randomize clusters
 - Examples: practice, hospital, region

Cluster-randomized trial

- Cluster-randomized trial (CRT) definition
 - Unit of randomization is cluster of individuals
 - Unit of outcome measurement is individual
- 8 of 9 Demonstration Projects are CRTs
- Also known as:
 - Group-randomized trial
 - Community-randomized trial

Level 2: Randomization at clinic (ie, cluster) level

Level 1: Individual-level outcomes nested in clinics

Level 2: Randomization at clinic (ie, cluster) level

Individual-level outcomes within same clinic expected to be correlated with each other (ie, to *cluster*)

Level 2: Randomization at clinic (ie, cluster) level

Implications of using CRT design

- CRT (statistical) price to pay
 - Lower power for same total sample size under individual randomization
 - Harder to detect an intervention effect
- So why use CRT design?
 - Intervention at cluster level (eg, STOP CRC)
 - To avoid treatment contamination under individual randomization
 - Logistically easier to implement trial

Rationale for CRT design

STOP CRC

- Clinic-level intervention
- Any comments from Gloria?
- TSOS
 - Intervention at cluster level
 - Implementation science framework
 - Any comments from Doug?

Example RCT: SPOT RCT

- Only Demonstration Project with individual randomization
- Goal: suicide prevention
- Two active arms
 - Both interventions are individual-level
 - Intervention contact mostly through EHR, so expect low risk of contamination

Example RCT: SPOT study flow

Fig. 1 Trial flow chart

Source: Simon G et al. Trials 2016;17:452

What unit of randomization makes the most sense for your study and why?

Overview: stats & design for ePCTs

- Randomization schemes: cluster vs individual
- Cluster-randomized trials (CRTs)
 - 1: Special considerations for CRTs
 - Clustering of outcomes
 - Small # of clusters
 - 2: Varieties of cluster-randomized trials
 - Parallel
 - Stepped-wedge
- Other considerations
- How do I know I have the right statistician?

Special considerations for CRTs

1. Clustering of outcomes

- Clustering (of a particular outcome)
- Accounting for clustering in analysis
- Accounting for clustering in design
- 2. Small # of clusters
 - Potential for baseline covariate imbalance
 - How small is too small?

Special considerations for CRTs

1. Clustering of outcomes

- Clustering (of a particular outcome)
- Accounting for clustering in analysis
- Accounting for clustering in design
- 2. Small # of clusters
 - Potential for baseline covariate imbalance
 - How small is too small?

Clustering example: motivated by STOP CRC

- Suppose 10 clinics
- Each with 5 age-eligible patients
 - ie, not up-to-date with CRC screening
- Outcome:
 - Binary outcome: refused screening
 - "No screening within year of enrollment"

>1 participant/clinic gives no more information than 1 participant/clinic since every participant in a given clinic has same outcome

No clustering (ICC = 0)

20% uptake of CRC screening in each clinic No structure by clinic - more like a random sample of eligible participants

Not screened

A more typical situation: proportion screened ranges from 0% - 80%

Clustering in CRTs

- Outcomes in same clusters more similar to each other than to outcomes in other clusters
- STOP CRC:
 - Planned: >450 participant/clinic in 26 clinics
 - Effective sample size: 26 approx. 450
- Implications for statistical inference
- Major challenge in design & analysis

Measure of clustering: ICC

Intra-cluster correlation coefficient (ICC, ρ)

- Most commonly used measure of clustering
- Ranges: 0-1; 0= no clustering; 1= total clustering
- Typically < 0.2, commonly around 0.01 0.05
- "Between-cluster variance of outcome / total variance"

ICC for continuous outcomes:

$$\rho = \frac{\sigma_B^2}{\sigma_B^2 + \sigma_W^2} = \frac{\sigma_B^2}{\sigma_{Total}^2}$$

Involves both between-cluster & within-cluster variance

Measure of clustering: ICC & CV

- Need measure of clustering for sample size
- Coefficient of variation (CV) alternative to ICC

$$k = \frac{\sigma_B}{\mu}$$

where μ is overall mean of outcome

- Multiple definitions of ICC for binary outcomes
 - Some authors prefer CV for binary

Special considerations for CRTs

1. Clustering of outcomes

- Clustering (of a particular outcome)
- Accounting for clustering in analysis
- Accounting for clustering in design
- 2. Small # of clusters
 - Potential for baseline covariate imbalance
 - How small is too small?

Two example CRTs

- Inspired by STOP CRC
- 10 clinics/trial
 - 5 intervention (I) & 5 control (C)
 - 100 patients/clinic
- 1000 patients per trial
 - 500 intervention vs 500 control
- Binary outcome
 - Refused screening (yes/no)
 - "No screening within year enrollment"

- 5 clinics each randomized to control and intervention
- 100 eligible participants per clinic measured

Overall screening refusal proportion in both trials: 10% vs 6% **Question**: is intervention effective?

Which trial shows more evidence of benefit?

C=Control I=Intervention

Study features

?

Example from Hayes & Moulton (2009)

C=Control I=Intervention

Study features

- Trial A:
 - Lower between-clinic variability (ie, less clustering)
 - Little overlap of I & C clinic-level proportions
- Trial B: overlap of I & C clinical-level proportions

Example from Hayes & Moulton (2009)

- If ignore clustering: p-value = **0.02** for both trials
- Comparison of 10% (50/500) vs 6% (30/500) by chi-sq. test

- Trial B p-value accounting for clustered design = ?
- If ignore clustering: p-value = 0.02

- Trial B p-value accounting for clustered design = 0.17
- If ignore clustering: p-value = 0.02

- Trial A p-value accounting for clustered design = ?
- Trial B p-value accounting for clustered design = 0.17
- If ignore clustering: p-value = 0.02

- Trial A p-value accounting for clustered design = 0.01
- Trial B p-value accounting for clustered design = 0.17
- If ignore clustering: p-value = 0.02

- Trial A p-value accounting for clustered design* = 0.01
- Trial B p-value accounting for clustered design* = 0.17

*By using a cluster-level analysis where the 10 cluster-level proportions (5 per arm) are treated as continuous variables and analyzed with Wilcoxon rank sum test

Example from Hayes & Moulton (2009)

- Trial A p-value accounting for clustered design* = 0.004
- Trial B p-value accounting for clustered design* = 0.22

*Alternative cluster-level analysis using t-test, which has stronger assumptions (ie, normality of cluster-specific prevalence) than the Wilcoxon rank sum test

Example from Hayes & Moulton (2009)

Summary: clustering & analysis

- Two example trials
 - Analyzed with cluster-level analysis
 - Overall sample size (# clinics/trial) =10
- Both trials had same signal (10% vs 6%)
 - Totally different conclusions from each trial
 - Between-cluster variability Trial A < Trial B
 - *P*-value Trial A < *P*-value Trial B
- Important
 - If ignore clustered design, could claim 'significant' when not (eg, Trial B)

Summary: clustering & analysis

- Cluster-level analysis rarely used
- Typically use regression methods
 - Analyze individual-level data, eg, data from 1000 participants/trial not only 10 clinics
 - Methods to account for clustering
 - Random effects / mixed effects models
 - Generalized estimating equations (GEE)
- Work with statistician to ensure properly account for clustering

Special considerations for CRTs

1. Clustering of outcomes

- Clustering (of a particular outcome)
- Accounting for clustering in analysis
- Accounting for clustering in design
- 2. Small # of clusters
 - Potential for baseline covariate imbalance
 - How small is too small?

Clustering: design considerations

- Power & sample size
 - Account for anticipated clustering
 - Inflate RCT sample size
 - Work with statistician to do this correctly
- Use ICC (or CV) for outcome
 - ICC often 0.01-0.05
 - STOP CRC: ICC = 0.03 for primary outcome
 - Depends on outcome & study characteristics
 - Different outcome = different ICC, even in same CRT

Clustering in STOP CRC: design considerations

"Assumed equal numbers of subjects per clinic and equal numbers of clinics (n = 13) per group. In practice, the clinic sizes will not be equal, but since almost all clinics have at least 450 active age-eligible patients, we conservatively use this figure for all sites. We based our calculations on the simple paradigm of comparing two binomial proportions with a type I error rate of 5%, and adjusted both for intraclass correlation (ICC) and the reduced degrees-of-freedom (n = 24) for the critical values. Based on analyses by Dr. Green using the data from her Systems Of Support study [12,28], we expect the ICC to be about .03. Using this figure, we will have very good power (>91%) to detect absolute differences as small as 10 percentage points even if the FIT completion rate in the UC arm is as high as 15% (fecal testing rates for 2013 for usual care clinics was 10%). For an ICC of .05 we would still have >91% power for detecting effect sizes of at least 13 percentage points."

Clustering: impact on power

Power for parallel-arm CRT to compare two proportions of 15% vs 25% at two-tailed 5% significance (alpha) for an **overall sample of 11,700** (ie, like STOP CRC)

Clustering: design considerations

- Many references on CRT power and sample size
- Important to account for clustering
 - Some adjust RCT sample size by design effect: 1+(m-1)ρ, where m = # participants/cluster
 - Better to be more explicit
 - eg, want to determine # clusters needed for fixed # participants/cluster or vice-versa?
- Work with a statistician!

Resources

- NIH: https://researchmethodsresources.nih.gov/
- 5 textbooks (see reference list)
- See reference list: Turner et al. (2017) and Rutterford et al. (2015)

Clustering: design considerations

- How to get good initial estimate of ICC for a particular outcome?¹
 - It depends on outcome & study characteristics
 - CONSORT² statement on reporting of CRTs recommends ICC reported
 - Look at other articles with similar settings
- Be cautious when using pilot data from small study
 - ICC might have wide confidence interval
 - 1. See FAQ 13 at: https://researchmethodsresources.nih.gov/
 - 2. http://www.bmj.com/content/345/bmj.e5661

Special considerations for CRTs

1. Clustering of outcomes

- Clustering (of a particular outcome)
- Accounting for clustering in analysis
- Accounting for clustering in design
- 2. Small # of clusters
 - Potential for baseline covariate imbalance
 - How small is too small?

Example CRT: STOP CRC

Level 2: Randomization at clinic (ie, cluster) level

Level 1: Individual-level outcomes nested in clinics

- **Goal:** randomization \rightarrow baseline balance of covariates
- **Challenge:** baseline imbalance may occur if not many clusters enrolled (eg, there are 26 clinics in STOP CRC)

Small # of clusters & baseline covariate imbalance

- Pragmatic CRTs often enroll small # (<40) clusters
- Randomization may not balance baseline covariates
- Baseline covariate imbalance threatens internal validity ie, comparability of treatment arms
 - Challenge: claim intervention effect is causal but there may be confounding due to non-comparability of treatment arms

- Threat to internal validity of trial
- Could address with adjusted analysis
- Better to use design strategy
 - 'Restricted randomization'
- Three types of restricted randomization
 - Pair-matching
 - Stratification
 - Covariate-constrained randomization

Baseline clinic-level proportion who refused screening in previous year

Question: Why do we care about getting balance between treatment arms on clinic-level proportion who refused screening in previous year?

It might be related to proportion in the next year!

Example of extreme baseline imbalance using simple (ie, regular) randomization

Baseline clinic-level proportion who refused screening in previous year

Baseline covariate imbalance Possible design solution 1: Pair-matching

Baseline cliniclevel proportion who refused screening in previous year

Baseline covariate imbalance Possible design solution 1: Pair-matching

One example of pair-matched randomization to control & intervention arms

Intervention and control perfectly balanced on "pair" ie, exactly 1 cluster from each pair in intervention and 1 in control

Baseline covariate imbalance Possible design solution 1: Pair-matching

Another example of pair-matched randomization to control & intervention arms

Important: account for paired design in the analysis (eg, paired t-test or Wilcoxon signed rank test for cluster-level analysis or matched regression model)

Baseline clinic-level proportion who refused screening in previous year

Baseline covariate imbalance Possible design solution 2: Stratification

Baseline clinic-level proportion who refused screening in previous year 0% Stratum 1 Stratum 2

Baseline covariate imbalance Possible design solution 2: Stratification

One example of stratified randomization to control & intervention arms

Intervention and control perfectly balanced on "stratum" ie, exactly 2 clusters in intervention and 2 in control in each stratum **Baseline covariate imbalance** Possible design solution 2: Stratification

Another example of stratified randomization to control & intervention arms

Important: account for stratified design in the analysis (eg, stratified permutation test or fixed effect for strata in modelbased analysis)

Possible design solution 3: Constrained randomization

Previous examples

- Baseline balance of 1 clinic-level covariate ie, % refused screening in previous year
- Often have multiple clinic-level covariates
 - Categorical & continuous
 - Pair-matching & stratification cannot easily handle this
- Need more general form of restricted randomization
 - Covariate-constrained randomization

Possible design solution 3: Constrained randomization

Example: balance two continuous cluster covariates

Possible design solution 3: Constrained randomization

One example of simple randomization to control & intervention arms

On average, % Hispanic in control < % Hispanic in intervention (ie, not well-balanced) but reasonable balance on proportion who refused screening

Possible design solution 3: Constrained randomization

Another example of simple randomization to control & intervention conditions

Not well-balanced on % refused screening but reasonable balance on % Hispanic

Possible design solution 3: Constrained randomization

Neither randomization has good balance of both covariates across trial arms.

Solution: only allow randomizations that are "balanced enough" as measured by a "balance score" ie, use constrained randomization

Possible design solution 3: Constrained randomization

This randomization could be "balanced enough"

Work with a statistician! Must account for the design in the analysis

Possible design solution 3: Constrained randomization

- More general than stratification
- Can include more cluster-level covariates
- Both continuous and categorical covariates
- Example:
 - % Hispanic
 - % refused screening in previous year
 - Rural/urban
- Measure "balanced enough" with a balance metric (no details here – use statistical rationale)

Possible design solution: Restricted randomization

- Three types of restricted randomization
 - Pair-matching
 - Stratification (sort-of a special case of CCR)
 - Covariate-constrained randomization (CCR)
- Recommendation
 - Use restricted randomization if total # clusters < 40 and know of predictive baseline covariates
 - Avoid pair-matching (for statistical reasons)
- In practice, analysis must account for whatever type of restricted randomization is used in design

Example: Restricted randomization

• For STOP CRC:

- Used stratification by "clinic organization"
 - So "each organization will have both intervention and control clinics"
- Considered using constrained randomization, but:
 - "unpublished simulation models suggested that, for our relatively limited number of clusters, this approach might underperform relative to simple randomization"
(If you are planning a cluster-randomized design) What cluster-level covariates might be

important to balance on?

Special considerations for CRTs

1. Clustering of outcomes

- Clustering (of a particular outcome)
- Accounting for clustering in analysis
- Accounting for clustering in design

2. Small # of clusters

- Potential for baseline covariate imbalance
- How small is too small?

Few clusters: How low can you go?

- CONSORT extension for cluster RCTs
 - Recommends at least 4 clusters/arm
 - This is just a guide
- Statistical reasons may require much more than 8 clusters in total in a 2-arm trial!
- Remember: # clusters drives the power of trial more so than # participants
- CRTs require a lot of time and effort
 - Consider a pilot trial to get procedures in place*

* https://pilotfeasibilitystudies.biomedcentral.com/

Overview

- Randomization schemes: cluster vs individual
- Cluster-randomized trials (CRT)
 - 1: Special considerations for CRTs
 - Clustering
 - Small # of clusters
 - 2: Varieties of cluster-randomized trials
 - Parallel
 - Stepped-wedge
- Other considerations
- How do I know I have the right statistician?

Varieties of CRT

- 1. Parallel
- 2. Stepped-wedge

Varieties of CRT

Examples with 8 clusters: 1-year intervention

Control period

Intervention period

Incomplete steppedwedge design

Varieties of CRT

Examples with 8 clusters: 1-year intervention

CRT analysis: treatment effects

Estimated (primarily) using between- cluster ie, **vertical** information

Estimated using both **vertical** & horizontal (ie, within-cluster) information

Complete SW design

Based on: Hemming (2015) Stat Med

Control period

TSOS: SW-CRT

Zatzick D et al. Implementation Science 2016;11:58

Choosing CRT type: parallel vs SW

- Arguments **for** SW-CRT:
 - Can't immediately implement intervention in ½ clusters (eg, TSOS)
 - Pragmatic research: plan to implement in all clusters
 - Have few clusters + might gain power in SW-CRT
- Arguments <u>against</u> SW-CRT:
 - Risk confounding treatment effect with time effect
 - Could do staggered-start parallel-CRT if can't start implementation in ½ clusters immediately
 - Roll out to all clusters at end of evaluation, if effective

Choosing CRT type: parallel vs SW

Statistical recommendations:

- Use a parallel CRT design if you can
- If not, plan for time effects in designing & analyzing SW-CRT
- Work with statistician to account for clustering in design & analysis of both designs

(If you are planning a clusterrandomized design) What are the pros and cons of using a parallel vs stepped-wedge design for your trial?

4 min

2 min

Overview

- Randomization schemes: cluster vs individual
- Cluster-randomized trials (CRT)
 - 1: Special considerations for CRTs
 - Clustering
 - Small # of clusters
 - 2: Varieties of cluster-randomized trials
 - Parallel
 - Stepped-wedge
- Other considerations
- How do I know I have the right statistician?

Other considerations for ePCTs

- 1. ITT vs PP analysis
- 2. Blinding and concealment
- 3. Monitoring and managing unexpected changes

Other considerations for ePCTs

1. ITT vs PP analysis

- 2. Blinding and concealment
- 3. Monitoring and managing unexpected changes

Intent-to-treat vs per protocol analysis

- Pragmatic nature \rightarrow ITT commonly used
- PP often difficult to define
 - Screening yes/no is easy
 - Other interventions might have degrees of adherence to protocol
- Might be interested in other types of treatment effect
 - Average treatment effect on the treated

Other considerations for ePCTs

- 1. ITT vs PP analysis
- 2. Blinding and concealment
- 3. Monitoring and managing unexpected changes

ePCTs: blinding & concealment

- Concealment of randomization assignment to avoid selection bias
 - Less a problem in CRTs than RCTs if clusters all randomized together

- Blinding (masking)
 - May not be possible or practicable for CRTs
 - Objective assessment criteria should be consistently applied

Other considerations for ePCTs

- 1. ITT vs PP analysis
- 2. Blinding and concealment
- 3. Monitoring and managing unexpected changes

ePCTs: managing unexpected changes

- Study designs can be affected by:
 - Changes in study populations
 - Changes in coverage patterns
 - Changes in patient perceptions/decisions
 - Decisions by hospital/health system leadership
 - Changes in regulations or practice standards
 - Site turnover
- See examples of implications of ACA on STOP CRC (Vollmer et al, 2015)
- Careful planning and monitoring are needed

Overview

- Randomization schemes: cluster vs individual
- Cluster-randomized trials (CRT)
 - 1: Special considerations for CRTs
 - Clustering
 - Small # of clusters
 - 2: Varieties of cluster-randomized trials
 - Parallel
 - Stepped-wedge
- Other considerations
- How do I know I have the right statistician?

How do I know I have the right statistician?

- Someone who…
 - Wants to be involved from beginning of development of research proposal
 - Has experience with pragmatic trials & is familiar with the PRECIS tool
 - Has experience of EHR data?
 - Has experience of CRT design & analysis (if using a clustered design)

Good Important things to know

- Question drives design; design drives analysis
- Randomization
 - Individual preferred (for stat. reasons)
 - But cluster often needed (ie, a CRT)
- Considerations in both design and analysis
 - **Must** account for clustering (if CRT)
 - Best to account for baseline imbalance
- Good design is difficult, but critical
 - Need input from diverse team
 - Analysis may not be able to overcome design flaws

Important things to do

- Focus on the research question
- Collaborate with a faculty statistician even when developing research question
- Choose individual randomization (but only if possible and defensible)
- Select design features with analysis in mind
- Weigh statistical choices vs implementation challenges
- Write a protocol paper and publish it!