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What’s the problem?
• Opioid Use Disorder (OUD) causes significant morbidity 

and mortality
– Acute overdoses
– Sequalae of chronic addiction

• Interventions can reduce M&M, but...
– Require recognition of OUD   

• Objective:
– Automated identification of patients with OUD
– Target population for future prospective interventions



Computable Phenotypes

• What is a computable phenotype?
– “A defined set of data elements and logical expressions used to identify individuals or 

populations (i.e., cohorts) with particular diagnoses or medical conditions via clinical 
characteristics, events, and service patterns that are ascertained using a 
computerized query of an EHR system or data repository1”

– EHR data à automated identification of OUD patients
• Benefits:

– Rapid identification of patients
– Easy integration into automated alerts

1. Richesson RL, Hammond WE, Nahm M, et al. Electronic health records based phenotyping in next-generation clinical trials: a 
perspective from the NIH Health Care Systems Collaboratory. J Am Med Inform Assoc. 2013;20(e2):e226-31.



Methods: Internal Validation
• Study Setting: large healthcare system (268,000+ visits/year)

• Automated extraction from Epic EHR
• November 1, 2017 to October 31, 2018
• Inclusion: > 18 years of age
• Exclusion: admitted, pregnant, on MOUD

• EHR Definition
• Algorithm 1: Clinician or Biller coding
• Algorithm 2: Keywords in chief complaint or reason for visit

• “Heroin”, “Opiate”, “Opioid”, “Narcan”
• Exclude: “alcohol”, “ETOH”, “Benzodiazepine” 

• Clinical (gold standard) definition of OUD
• Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5)
• Two physician reviewers: Cohen’s Kappa 0.95
• Third reviewer for reconciliation 



Results: Internal Validation

Reviewer + Reviewer - Predictive Value (95% CI) Accuracy (95% CI)
Algorithm 1: 1508 + à random sample of 50 + 50 negative charts 

Phenotype  + 48 2 PPV 0.96 (0.862-0.995)
0.97 (0.915-0.994)

Phenotype   - 1 49 NPV 0.98 (0.894-0.999)

Algorithm 2: 249 + à random sample of 25 + 25 negative charts 
Phenotype  + 20 5 PPV 0.8 (0.593-0.932)

0.90 (0.782-0.967)
Phenotype   - 0 25 NPV 1.0 (0.863-1*)



Methods: External Validation
• Study Setting: second large healthcare system (200,000+ visits)
• Main criteria:

• Automated extraction from Epic EHR
• 20,000 Charts from November 1, 2017 to October 31, 2018
• Inclusion: > 18 years of age
• Exclusion: admitted, pregnant, on MOUD

• EHR Definition
• Algorithm 1: Clinician or Biller coding
• Algorithm 2: Keywords in chief complaint or reason for visit

• “Heroin”, “Opiate”, “Opioid”, “Narcan”
• Exclude: “alcohol”, “ETOH”, “Benzodiazepine” 

• Clinical (gold standard) definition of OUD
• Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5)
• Two physician reviewers: Cohen’s Kappa 0.93
• Third reviewer for reconciliation 



Results: External Validation
• 20,000 charts sampled in time frame
• Algorithm 1: 55 identified
• Algorithm 2: 1 identified 
• Combined for analysis

• 0.25% random sample of remaining à 50 negative charts

Reviewer + Reviewer - Predictive Value (95% CI) Accuracy (95% CI) 
Combined algorithms: 

Phenotype + 53 3 PPV 0.95 (0.851-0.989)
0.93 (0.869-0.973)

Phenotype - 4 46 NPV 0.92 (0.807-0.978)



Discussion
• Conclusions: 

– Algorithms were accurate, within limits of sample population
– External validity supports generalizability  

• Limitations:
– Inflated OUD prevalence
– Small sample size

• Future Directions:
– Apply prospectively to identify patients eligible for interventions

• EMR integration à Automated “alerts” 
– Translate to additional healthcare systems 
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