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Introduction

• Cluster Randomization Trial (CRT) is an experiment design in which groups are
randomized to treatments rather than individual units.

• Randomization at cluster level may be deemed necessary; if implementation of the
intervention at individual level is impractical, to address the potential spillover effect, or
for cost or administrative advantages.

• CRTs have become increasingly common in health services research because they are
ideally suited to address issues related to policy, practice and organization of health
care with groups defined by social organizations or geographical areas such as schools,
hospitals, towns or communities.

• The responses from individuals within a cluster are likely to be more similar than those
from different clusters due to their similar characteristics or shared external exposures.
This lack of independence introduces complexity to the design and analysis.

• Currently, sample size calculation methods for CRTs all depend on specific distribution
assumptions and asymptomatic approximation. They are limited and can be too cursory
when the actual number of clusters are small, which is usually the case for CRTs.

• We propose a simulation-based search algorithm to estimate the required sample size
for CRTs. We show that this approach is general and accurate with both simulation
and real data examples.

Sample Size Formulas with Asymptotic Distributions

• Continuous Outcomes [Donner(1981)]:
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• Continuous Outcomes with varying cluster sizes[Manatunga(2001)]:

n =
(Zα/2 + Zβ)2

(µ1 − µ0)2 σ2{ 1
m

+ (1− 1
m

)ρ + ρCV 2
mi

} (2)

• Binary Outcomes [Donner(1981)]:
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• Count Outcomes [Hayes&Bennett1999]:
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(µ0, µ1, σ2), (p0, p1), and (λ0, λ1) are population parameters under H0 and H1 for each outcome types respectively;
m is the average size of cluster with mi denoting that for cluster i and CVmi

is the Coefficient of Variation of all cluster sizes;
ν̄ is the average accumulated individual-time from all cluster with νi denoting that for cluster i and CVνi is the Coefficient of
Variation of cluster level individual time.

Casual Framework & Simulation Scheme
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2. Yij(1)| Yij(0) ~ f1|0 
3. Test Statistic: T(Y(0), Y(1), A )

0.    mi ~ fm

•Power from asymptotic distribution of T (∗):
1 Given a pair of sample size (n0, n1), simulate n0 clusters for the control arm, and n1 clusters for the
intervention arm, including their sizes, individual unit’ potential outcomes.

2 Compute the test statistic under both hypotheses as
TH0

(
~Y (0), ~Y (0), ~A

)
and TH1

(
~Y (0), ~Y (1), ~A

)
where ~A = (~0nc,~1nt)

3 Repeat the above 2 steps for enough times to approximate the asymptotic distribution of TH0(∗) and TH1(∗).
4 Given the threshold for type-I error, α, defined reject region from the distribution of TH0(∗). Then, calculate
power with the reject region and the distribution of TH1(∗).

•Power from randomization distribution of T (∗):
1 When the population of clusters are assumed to be finite, simulate nt + nc clusters without replacement from
the population of clusters. Then generate individual unit’ potential outcomes in the same way as above.

2 Compute the test statistic under both hypotheses with all possible assignments, ~A = permutation(~0nc,~1nt) to
obtain the randomization distribution of TH0(∗) and TH1(∗).

3 Compute power similarly as above with the randomization distribution.
•Binary Search: Given a pair of sample size (n0, n1), calculate the associated hypothesis
testing power with the above simulation scheme, and then adopt a binary search algorithm to
obtain the optimal sample size for a pre-specified power threshold.

Simulation Experiment:
Robustness with various data distributions

• The distribution of clusters fm, the baseline f0 and the effect size f1|0 are impulsed to
represent various cases. The power from asymptomatic distribution of T (∗) is examined.
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Real Data Example:
Hospitalization Rate in US Nursing Homes:

• Influenza Vaccines Study (Mor 2017)
• The number of hospitalization of patients from 817 participating nursing homes were collected in this study during
the flu season of 2013. The average hospitalization rate is 0.81 per patient-year. Over 80% of the patients never
experienced hospitalization during the flu season.

•The Population of Clusters: Finite vs Infinite
• When the population of clusters is small (finite), the clusters should be sampled without replacement to account for
the sampling correlations. In such cases, sampling with replacement under infinite population assumption generally
overestimates the hypothesis test power.
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• Follow-up Extension & Clusters Recruitment Order
• Assuming only 40 clusters are available in the population, we can obtain higher power by extending the follow-up time.
• In practice, not all clusters in the population are equally likely to be recruited. Our results show that the order of
recruitment matters, which suggests that the randomization distribution should be considered.
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Conclusion

• This new simulation-based approach is general in terms of data distributions and test statistics, and
it generates more accurate estimation of the sample size than closed-form formulas with enough
number of simulation replications.

• This approach opens more possibilities for the designed of CRTs with previous data. It allows
researchers to investigate the effect of recruitment order of clusters and the follow-up time for count
outcomes. It also naturally enables causal inference with potential outcomes defined from Rubin’s
causal framework.

• The algorithm is also very flexible. It can search for unbalanced sample allocations which may be
fevered in practice due to budget constrains.
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