Integrating D&I Into ePCT Study Designs & Analysis

Patrick Heagerty, PhD Professor, Biostatistics University of Washington School of Public Health

Health Care Systems Research Collaboratory

 Recognize the analytical challenges and trade-offs of pragmatic study designs, focusing on what PIs need to know and highlighting design and analysis considerations and decision points from METRICAL.

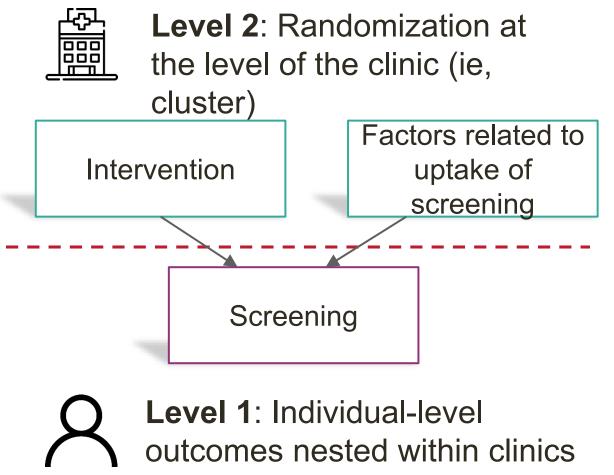
60 Important things to know

- Studies that randomize groups or deliver interventions to groups face special analytic challenges not found in traditional individually randomized trials
- Failure to address these challenges will result in an underpowered study and/or an inflated type 1 error rate
- We won't advance the science by using inappropriate methods

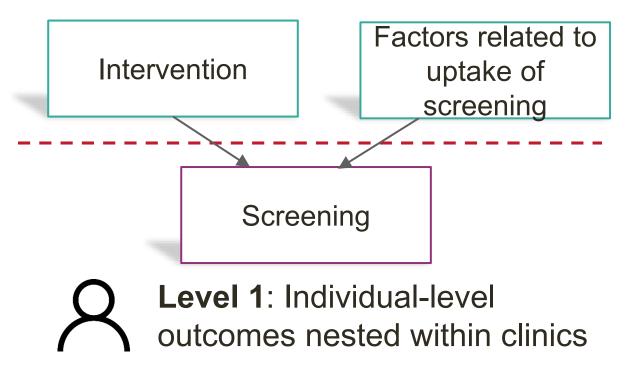
NIH Collaboratory ePCT: STOP CRC

- Strategies and Opportunities to Stop Colorectal Cancer in Priority Populations (STOP CRC)
- 40,000+ patients across 26 clinical sites
- Intervention
 - Health system—based program to improve CRC screening rates
 - Applied to clinical site \rightarrow cluster randomization
- Unit of randomization: clinical site
- Two-arm cluster randomized trial (CRT)
 - Also referred to as a group-randomized or community randomized trial

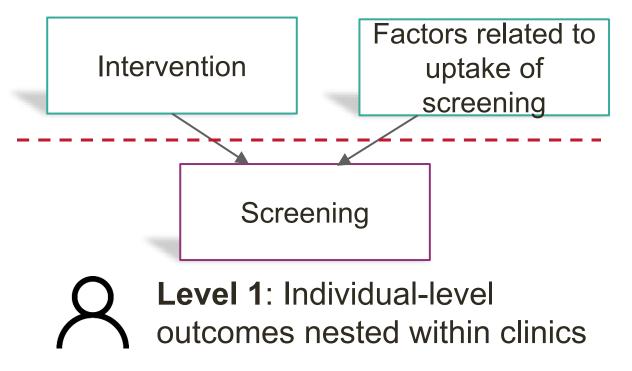
Coronado GD et al. Contemp Clin Trials. 2014;38(2):344-349.


Reasons to randomize clusters instead of individuals

- Intervention targets health care units rather than individuals
 - STOP CRC: clinic-based intervention to improve screening
- Intervention targeted at individual risks "contamination"
 - Intervention spills over to members of control arm
 - For example, physicians randomized to new educational program may share knowledge with control-arm physicians in their practice
 - Contamination reduces the observed treatment effect
- Logistically easier to implement intervention by cluster


STOP CRC cluster randomization

STOP CRC cluster randomization



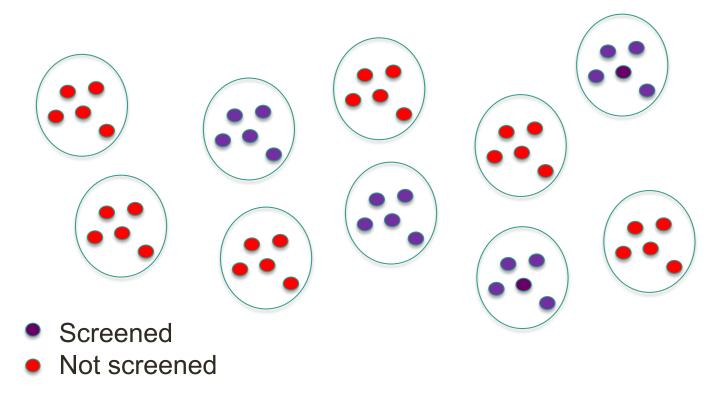
• Individual-level outcomes within same clinic expected to be correlated (ie, to *cluster*)

STOP CRC cluster randomization

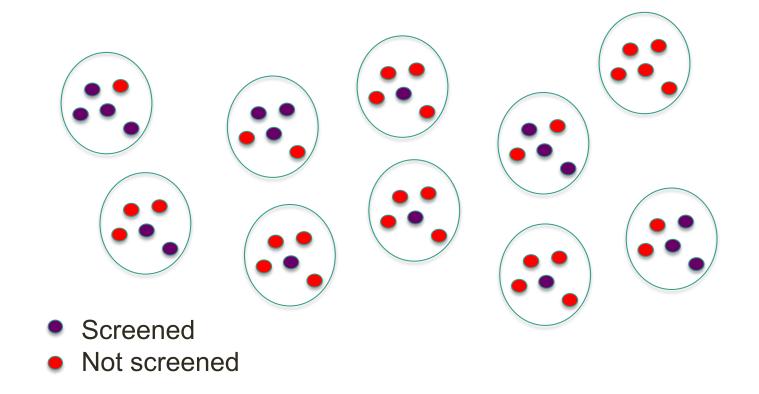
- Individual-level outcomes within same clinic expected to be correlated (ie, to *cluster*)
- Reduces power to detect treatment effect if same sample size used as under individual randomization

Understanding outcome clustering

Consider 10 control-arm clinics (ie, clusters)


 Each with 5 age-eligible patients: ie, who are not up to date with colorectal cancer (CRC) screening

Binary outcome: refused screening (Y/N)


Understanding outcome clustering: <u>complete</u> clustering

Understanding outcome clustering: <u>some</u> clustering

Methods for pragmatic trials

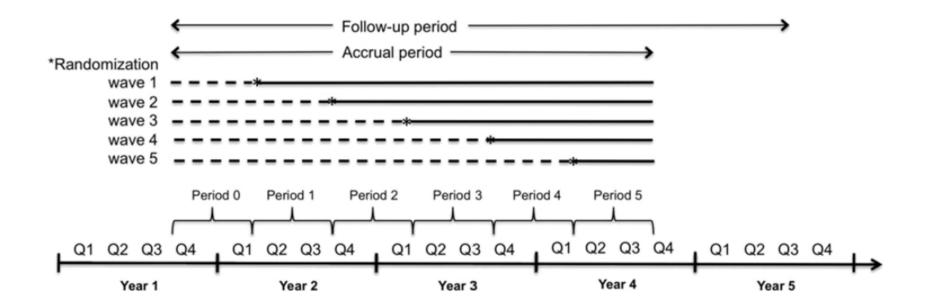
- Pragmatic trials do not require a completely different set of research designs, measures, analytic methods, etc.
- As always, the choice of methods depends on the research question.
- The research question dictates
 - the intervention, target population, and variables of interest,
 - which dictate the setting, research design, measures, and analytic methods.
- Randomized trials will provide the strongest evidence.
 - What kind of randomized trial depends on the research question and how the intervention will be delivered.
- Alternatives to randomized trials are available, but not included in this presentation.

Summary of design issues

- All the design features common to RCTs are available to GRTs with the added complication of an extra level of nesting:
 - Cohort and cross-sectional designs;
 - Post only, pre-post, and extended designs;
 - Single-factor designs and factorial designs;
 - A priori matching or stratification;
 - Constrained randomization
- The primary threats to internal and statistical validity are well known, and defenses are available.
 - Plan the study to reflect the nested design, with sufficient power for a valid analysis, and avoid threats to internal validity.

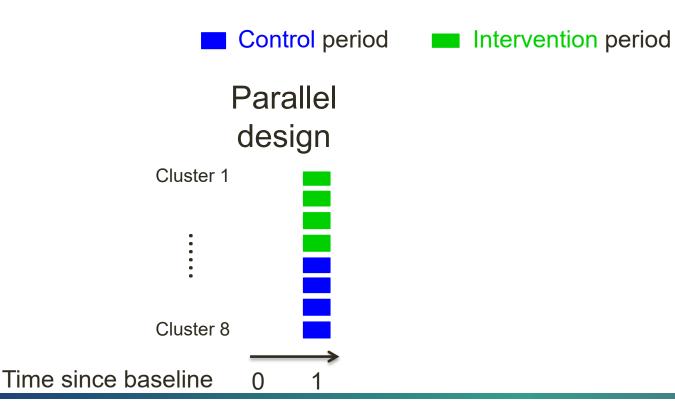
NIH Collaboratory ePCT: LIRE

- Lumbar Imaging with Reporting of Epidemiology (LIRE)
- Goal: reduce unnecessary spine interventions by providing info on prevalence of normal findings
- Patients of 1700 PCPs across 100 clinics
- Clinic-level intervention \rightarrow cluster randomization
- Unit of randomization: clinic
- Pragmatic trial
 - All clinics will eventually receive intervention
 - Stepped-wedge CRT


Jarvik JG et al. Contemp Clin Trials. 2015;45(Pt B):157-163.

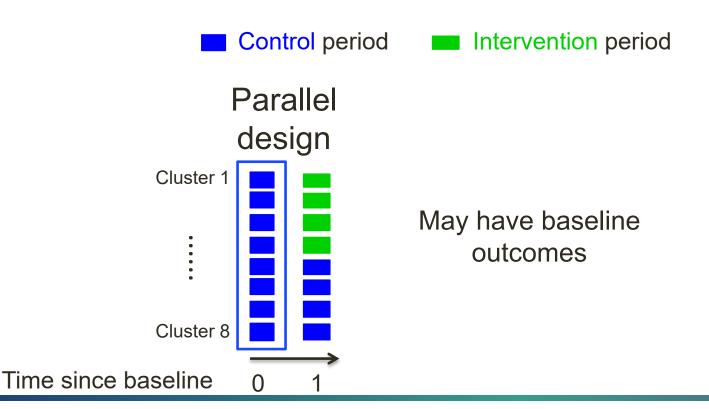
NIH Collaboratory ePCT: LIRE

- Exposed to LIRE intervention
- Unexposed to LIRE intervention


Source: Jarvik JG et al. Contemp Clin Trials. 2015;45(Pt B):157-163.

Types of CRT designs

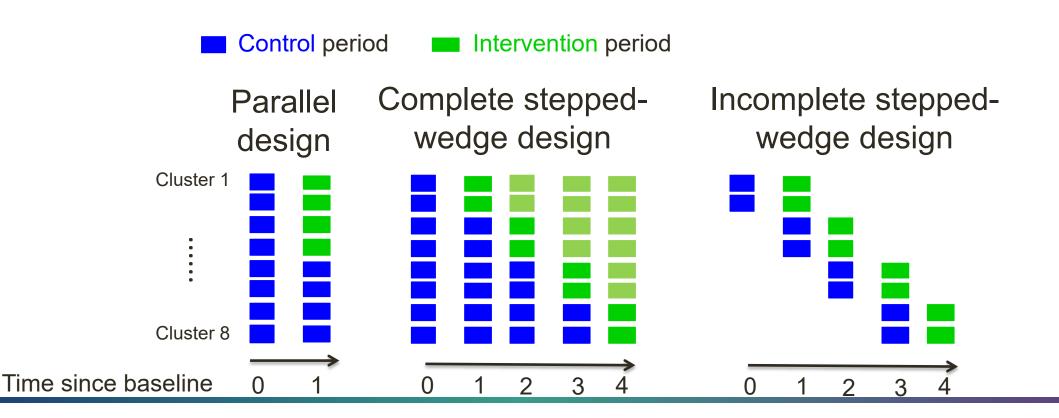
Examples with 8 clusters: 1-year intervention


Health Care Systems Research Collaboratory

Based on: Hemming K, Lilford R, Girling AJ. 2015. Stepped-wedge cluster randomised controlled trials: a generic framework including parallel and multiple-level designs. Stat Med. 34:181-196. doi:10.1002/sim.6325. PMID: 25346484

Types of CRT designs

Examples with 8 clusters: 1-year intervention


Health Care Systems Research Collaboratory

Based on: Hemming K, Lilford R, Girling AJ. 2015. Stepped-wedge cluster randomised controlled trials: a generic framework including parallel and multiple-level designs. Stat Med. 34:181-196. doi:10.1002/sim.6325. PMID: 25346484

Types of CRT designs

Examples with 8 clusters: 1-year intervention

Health Care Systems Research Collaboratory

Based on: Hemming K, Lilford R, Girling AJ. 2015. Stepped-wedge cluster randomised controlled trials: a generic framework including parallel and multiple-level designs. Stat Med. 34:181-196. doi:10.1002/sim.6325. PMID: 25346484

Summary of design issues

- Many of the design features common to RCTs are available to SW-GRTs:
 - Cohort and cross-sectional designs;
 - Single-factor designs and factorial designs;
 - A priori matching, stratification, or constrained randomization to create comparable sequences.
- The primary threats to internal and statistical validity are well known, and defenses are available.
 - Plan the study to reflect the nested design, with sufficient power for a valid analysis, and avoid threats to internal validity.

Challenges of pragmatic study design

- Trade-offs in flexibility, adherence, and generalizability are inevitable
- Implementation by healthcare system staff, not research staff
- New staff workflow and responsibility acknowledged
- Triage or case selection by healthcare system staff using existing structures with some modification

IMPACT Collaboratory: examples of analytic challenges and trade-offs

- Stepped wedge designs "roll out" over time and are more susceptible to disruption!
- Parallel group randomized designs are simple and powerful, but still need to address "clustering" for design and analysis.

Resources

Visit the Living Textbook of Pragmatic Clinical Trials at

www.rethinkingclinicaltrials.org

Rethinking Clinical Trials: A Living Textbook of Pragmatic Clinical Trials

Welcome to the Living Textbook of pragmatic clinical trials, a collection of knowledge from the NIH Health Care Systems Research Collaboratora, Pragmatic clinical trials present an opportunity to efficiently generate high-quality evidence to inform medical decision-making. However, these trials pose different

challenges than traditional clinical trials. The Living Textbook reflects a collection of special considerations and best practices in the design, conduct, and reporting of pragmatic clinical trials. GET STARTED

What is the

NIH COLLABORATORY? >>

What is a PRAGMATIC CLINICAL TRIAL? ⊗

TRAINING RESOURCES >>

IMPACT Training Modules ePCT Video Learning Library

www.impactcollaboratory.org

Health Care Systems Research Collaboratory

