Linking Design to Analysis of Cluster Randomized Trials: Covariate Balancing Strategies

Fan (Frank) Li

PhD Candidate in Biostatistics Department of Biostatistics and Bioinformatics Duke Clinical Research Institute Duke University

NIH Collaboratory Grand Rounds on February 9, 2018

Acknowledgement

- NIH Collaboratory Biostatistics and Study Design Core Working Group
 - Elizabeth DeLong, PhD, David Murray, PhD, Patrick Heagerty, PhD, Elizabeth Turner, PhD, William Vollmer, PhD, Andrea Cook, PhD, Yuliya Lokhnygina, PhD
- Collaborators at Duke and Harvard
 - John Gallis, ScM, Melanie Prague, PhD, Hengshi Yu, MS
- Funding
 - This work was supported by the NIH Health Care Systems Research Collaboratory (U54 AT007748) from the NIH Common Fund

Outline

- 1. Introduction
- 2. Balancing strategies
 - 2.1 Stratification and pair matching
 - 2.2 Constrained randomization
- 3. Two lessons for statistical analysis
- 4. Summary

1. Introduction

Cluster (group) randomized trials

- Randomization at the cluster level (clinics, hospitals, etc.)
 - Intervention delivered at the cluster level
 - Outcome measured at the individual level
- Focus on parallel design
 - Intervention implemented simultaneously
- Limited number of clusters available
 - Most CRTs randomize ≤ 24 clusters ¹
- Chance imbalance is likely to occur after simple randomization (see an example that follows)

¹Fiero MH, Huang S, Oren E, Bell ML (2016). Statistical analysis and handling of missing data in cluster randomized trials: a systematic review. *Trials*

An example trial

• Consider the reminder/recall (R/R) immunization study 2

- 2-arm parallel CRT with 16 counties (clusters)
- to increase immunization rate in children 19-35 months
- a population-based R/R approach (Trt)
- a practice-based R/R approach (Ctr)
- binary response variable, immunization status for children in contacted families
- Location known for all clusters (8 rural & 8 urban)

²Dickinson LM, Beaty B, Fox C, Pace W, Dickinson WP, Emsermann C, Kempe A (2015). Pragmatic cluster randomized trials using covariate constrained randomization: a method for practice-based research networks. *Journal of the American Board of Family Medicine*

Ideal scenario

• Symbolic representation

Location	# of counties	Symbols
Rural Urban	8 8	•••••

- Assign 8 counties to each arm
- We wish to achieve "balance" after randomization

Arm	# of rural/urban counties	Symbols
Trt	4/4	••••••
Ctr	4/4	••••••

• Same number of urban (or rural) counties/arm \Rightarrow balance

Chance imbalance

- Random allocation of 16 counties to two arms does not guarantee "balance"
 - balance defined by same number of urban counties/arm
- We may end up getting

Arm	# of rural/urban counties	Symbols
Trt	2/6	••••••
Ctr	6/2	••••••

- With a few clusters, the probability of getting an "imbalanced" random allocation is non-negligible ($\approx 1/8)$
- Chance imbalance becomes a bigger issue with more than one baseline variable

Why baseline balance

- Chance imbalance leads to ³
 - poor internal validity
 - reduced study power/precision of estimates (issue magnified by small sample size)
- Need design-based adjustment of baseline covariates to avoid chance imbalance
- Design-based solution is possible since
 - all clusters are identified prior to randomization (baseline cluster characteristics specified)
 - unlike individually randomized trials with sequential enrollment

³Turner EL, Li F, Gallis JA, Prague M, Murray DM (2017). Review of recent methodological developments in group-randomized trials: Part 1-design. *Am J Public Health*

Baseline characteristics

- R/R immunization study
 - ① location (rural/urban)
 - (2) % children with immunization record
 - 3 # children aged 15-35 months
 - 4% up-to-date at baseline
 - (5) % Hispanic
 - 6 % African American
 - ⑦ average income
 - (8) pediatric-to-family medicine practices ratio
 - (9) # of community health centers
- Various types of covariates, most of which are continuous
- · Goal: leverage design-based control of baseline covariates

2. Balancing strategies

Stratification

- Create distinct strata of clusters based on baseline covariates
 - straightforward with categorical variables
- Stratified randomization

	Location	Symbols	Randomization
Stratum 1	rural	•••••••	1:1 to two arms $1:1$ to two arms
Stratum 2	urban	•••••••	

• Balance is maintained within each stratum defined by location

Arm	# of rural/urban counties	Symbols
Trt	4/4	•••••••
Ctr	4/4	••••••

Stratification

- Create distinct strata of clusters based on baseline covariates
 - continuous variables will be categorized (e.g. high versus low)

	Location	Avg income	# of counties	Randomization
Stratum 1	rural	low	0	1:1 to two arms?
Stratum 2	rural	medium	000	1:1 to two arms?
Stratum 3	rural	high	0000	1:1 to two arms?
Stratum 4	urban	low	none	none
Stratum 5	urban	medium	00000	1:1 to two arms?
Stratum 6	urban	high	000	1:1 to two arms?

- - unavoidable with a number of baseline covariates (R/R study)
 - sensitive to cutoff used in categorization
 - same drawback in individual RCTs

Pair matching

- Good matches \Rightarrow an effective mechanism to create comparable groups
- Suppose location variable is of good prognostic values (the matching variable), can create eight pairs of clusters

	rural/urban counties	Symbols	Trt	Ctr
Pair 1	2/0	••	•	•
Pair 2	2/0	••	•	•
Pair 3	2/0	••	•	•
Pair 4	2/0	••	•	•
Pair 5	0/2	••	•	•
Pair 6	0/2	••	•	•
Pair 7	0/2	••	•	•
Pair 8	0/2	••	•	•

Pair matching

- Matching with multiple covariates relies on a multivariate distance metric
- Advantage⁴
 - allows for an efficient nonparametric design-based estimator
- Disadvantages ⁵
 - loss of follow-up from one cluster removes its matches
 - difficult to properly calculate the intraclass correlation coefficient (ICC)
 - "break the matches"?

⁵Klar N, Donner A (1997). The merits of matching in community intervention trials: A cautionary tale. *Stat Med.*

⁴Imai K, King G, Nall C (2009). The essential role of pair matching in cluster randomized experiments, with application to the Mexican universal health insurance evaluation. *Stat Sci.*

Constrained randomization (CR)

- General idea
 - Specify the simple randomization space containing all possible allocation schemes
 - Assess "balance" for each possible allocation scheme
 - Randomize only within a constrained space with "balanced" allocation schemes
- Advantages⁶
 - accomondate a number of, and all types of covariates
 - does not complicate ICC calculation

⁶Li F, Turner E, Heagerty PJ, Murray DM, Vollmer W, Delong ER (2017). An evaluation of constrained randomization for the design and analysis of group-randomized trials with binary outcomes. *Stat Med*

Schematic illustration of constrained randomization

- R/R study with n = 16 clusters and 8 clusters/arm
- Simple randomization: 12,870 allocation schemes
- 9 allocation types of 8 rural (x=0) & 8 urban (x=1) clusters
- Balance score by a simple balance metric: $|\bar{x}_T \bar{x}_C|$

# Rural in Arms	Treatment	Control	# of schemes	Balance
8/0	••••••		1	1.00
7/1	•••••••	••••••	64	0.75
6/2	•••••••	••••••	784	0.50
5/3	•••••••	••••••	3136	0.25
4/4	•••••••	••••••	4900	0.00
3/5	•••••••	•••••••	3136	0.25
2/6	••••••	•••••••	784	0.50
1/7	••••••	•••••••	64	0.75
0/8	0000000	••••••	1	1.00

Schematic illustration of constrained randomization

- Constrain to 4,900/12,870 allocations with most balance
 - Balance score = 0
 - 4 rural & 4 urban clusters/arm
- Randomize 16 clusters within the constrained subset of 4,900

Treatment	Control	# of schemes	Balance
		1	1.00
			0.75
		784	0.10
		2136	0.30
		4900	0.25
		2126	0.00
		784	0.25
		70 4 64	0.30
			0.75
		1	1.00

Implementing covariate constrained randomization

- Step 1: Specify important baseline cluster-level covariates
- Step 2: Generate allocation schemes
 - Either enumerate all schemes (e.g. if $n \leq 18$)
 - Or simulate many schemes (e.g. 50,000) & remove duplicates
- Step 3: Select a **constrained randomization space** with sufficiently-balanced allocations according to **balance metric**
- Step 4: Randomly sample 1 scheme from constrained randomization space

Balance metrics

- Goal: balance K baseline cluster-level covariates
- Could consider any sensible balance metric (distance function)
- Class of balance metrics: $B = \sum_k \omega_k g(\bar{x}_{Tk} \bar{x}_{Ck})$
- Two common balance metrics:

Balance metric	g(t)	Default weights (w_k)	Reference
$B_{(l2)}$	t^2	$1/s_k^2$	Raab and Butcher (2001) 7
$B_{(l1)}$	t	$1/s_k$	Li et al (2017) ⁶

Unitless metrics under default weights

⁶Li F, Turner E, Heagerty PJ, Murray DM, Vollmer W, Delong ER (2017). An evaluation of constrained randomization for the design and analysis of group-randomized trials with binary outcomes. *Stat Med*

 $^{^7 {\}rm Raab}$ GM, Butcher I (2001). Balance in cluster randomized trials. Stat Med

R/R Immunization Study: Two balance metrics

- Balance all 9 baseline covariates
- *l*1 and *l*2 metrics very similar: can use either one for constrained randomization

• Spearman rank correlation: $\lambda = 0.97$

Size of randomization space

- Balance all 9 baseline covariates
- $\binom{16}{8} = 12,870$ possible allocation schemes with equal-arm assignment
- Example: constrained randomization space 10% of simple randomization space

R/R Immunization

Size of constrained randomization space

- q = size of the constrained randomization space as % of entire simple randomization space with lowest balance scores
- q small but should not be too small
 - Risk deterministic allocation
 - May prohibit permutation test for a fixed α
- + q=10% works well in simulation experiments $^{\rm 6}$
 - Power \uparrow as $q\downarrow$ by balancing predictive covariates
 - Relationship not monotone, power may not \uparrow if q < 10%

⁶Li F, Turner E, Heagerty PJ, Murray DM, Vollmer W, Delong ER (2017). An evaluation of constrained randomization for the design and analysis of group-randomized trials with binary outcomes. *Stat Med*

Example: R/R Immunization study

- Goal: Increase child immunization rate
- Randomize 16 clusters (counties) to 'treatment' vs. 'control'
- Balance on 3 outcome-predictive baseline cluster covariates

- Allocate 16 clusters (8/arm) + balance on 3 covariates
- Use $B_{(l2)}$ metric + constrain at q=10% of simple randomization (SR) space
- Compare mean covariate levels between arms under "best" balance, at "boundary" of 10% CR space & under "worst" balance (i.e. at worst SR allocation)

Covariate - Mean	"B	est"	"CR B	oundary"	"W	orst"
	Trt	Ctr	Trt	Ctr	Trt	Ctr
# of urban county	4	4	4	4	0	8
% hispanic	22.4	22.3	19.9	24.8	24.4	20.3
% up-to-date at baseline	40.8	40.9	40.3	41.4	37.6	44.0
balance score	$B_{(l2)} =$	= 0.005	$B_{(l2)}$	= 2.58	$B_{(l2)} =$	= 71.08

- Allocate 16 clusters (8/arm) + balance on 3 covariates
- Use $B_{(l2)}$ metric + constrain at q = 10% of simple randomization (SR) space
- Compare mean covariate levels between arms under "best" balance, at "boundary" of 10% CR space & under "worst" balance (i.e. at worst SR allocation)

Covariate - Mean	"В	est"	"CR B	oundary"	"W	orst"
	Trt	Ctr	Trt	Ctr	Trt	Ctr
# of urban county	4	4	4	4	0	8
% hispanic	22.4	22.3	19.9	24.8	24.4	20.3
% up-to-date at baseline	40.8	40.9	40.3	41.4	37.6	44.0
balance score	$B_{(l2)} =$	= 0.005	$B_{(l2)}$	= 2.58	$B_{(l2)} =$	= 71.08

- Allocate 16 clusters (8/arm) + balance on 3 covariates
- Use $B_{(l2)}$ metric + constrain at q = 10% of simple randomization (SR) space
- Compare mean covariate levels between arms under "best" balance, at "boundary" of 10% CR space & under "worst" balance (i.e. at worst SR allocation)

Covariate - Mean	"Best"		"CR Boundary"		"Worst"	
	Trt	Ctr	Trt	Ctr	Trt	Ctr
# of urban county	4	4	4	4	0	8
% hispanic	22.4	22.3	19.9	24.8	24.4	20.3
% up-to-date at baseline	40.8	40.9	40.3	41.4	37.6	44.0
balance score	$B_{(l2)} =$	= 0.005	$B_{(l2)}$	= 2.58	$B_{(l2)} =$	= 71.08

- Allocate 16 clusters (8/arm) + balance on 3 covariates
- Use $B_{(l2)}$ metric + constrain at q = 10% of simple randomization (SR) space
- Compare mean covariate levels between arms under "best" balance, at "boundary" of 10% CR space & under "worst" balance (i.e. at worst SR allocation)

Covariate - Mean	"Best"		"CR Boundary"		"Worst"	
	Trt	Ctr	Trt	Ctr	Trt	Ctr
# of urban county	4	4	4	4	0	8
% hispanic	22.4	22.3	19.9	24.8	24.4	20.3
% up-to-date at baseline	40.8	40.9	40.3	41.4	37.6	44.0
balance score	$B_{(l2)} =$	= 0.005	$B_{(l2)}$	= 2.58	$B_{(l2)} =$	= 71.08

- Allocate 16 clusters (8/arm) + balance on 3 covariates
- Use $B_{(l2)}$ metric + constrain at q = 10% of simple randomization (SR) space
- Compare mean covariate levels between arms under "best" balance, at "boundary" of 10% CR space & under "worst" balance (i.e. at worst SR allocation)

Covariate - Mean	"Best"		"CR Boundary"		"Worst"	
	Trt	Ctr	Trt	Ctr	Trt	Ctr
# of urban county	4	4	4	4	0	8
% hispanic	22.4	22.3	19.9	24.8	24.4	20.3
% up-to-date at baseline	40.8	40.9	40.3	41.4	37.6	44.0
balance score	$B_{(l2)} =$	= 0.005	$B_{(l2)}$	= 2.58	$B_{(l2)} =$	= 71.08

- Allocate 16 clusters (8/arm) + balance on 3 covariates
- Use $B_{(l2)}$ metric + constrain at q = 10% of simple randomization (SR) space
- Compare mean covariate levels between arms under "best" balance, at "boundary" of 10% CR space & under "worst" balance (i.e. at worst SR allocation)

Covariate - Mean	"Best"		"CR Boundary"		"Worst"	
	Trt	Ctr	Trt	Ctr	Trt	Ctr
# of urban county	4	4	4	4	0	8
% hispanic	22.4	22.3	19.9	24.8	24.4	20.3
% up-to-date at baseline	40.8	40.9	40.3	41.4	37.6	44.0
balance score	$B_{(l2)} =$	= 0.005	$B_{(l2)}$	= 2.58	$B_{(l2)} =$	= 71.08

- Allocate 16 clusters (8/arm) + balance on 3 covariates
- Use $B_{(l2)}$ metric + constrain at q = 10% of simple randomization (SR) space
- Compare mean covariate levels between arms under "best" balance, at "boundary" of 10% CR space & under "worst" balance (i.e. at worst SR allocation)

Covariate - Mean	"Best"		"CR Boundary"		"Worst"	
	Trt	Ctr	Trt	Ctr	Trt	Ctr
# of urban county	4	4	4	4	0	8
% hispanic	22.4	22.3	19.9	24.8	24.4	20.3
% up-to-date at baseline	40.8	40.9	40.3	41.4	37.6	44.0
balance score	$B_{(l2)} =$	= 0.005	$B_{(l2)}$	= 2.58	$B_{(l2)} =$	= 71.08

Application of CR to the R/R study

- Balance all of 9 baseline covariates
- Similar to Dickinson et al. (2015) ², list the "best" and "worst" allocation schemes under CR with q = 0.1

Covariate - Mean (Sd)	"В	est"	"CR Boundary"		
	Trt	Ctr	Trt	Ctr	
# of urban county	4 (50)	4 (50)	4 (50)	4 (50)	
% in CIIS	87.4 (7.5)	87.0 (8.4)	87.6 (5.4)	86.6 (9.9)	
# of children	4172 (4465)	4221 (4707)	4068 (4640)	4325 (4530)	
% up-to-date at baseline	41.4 (8.4)	40.3 (8.7)	42.1 (9.7)	39.5 (7.1)	
% African American	3.3 (3.1)	2.5 (2.5)	3.5 (3.0)	2.3 (2.5)	
% Hispanic	21.9 (12.1)	22.8 (14.5)	18.3 (11.8)	26.4 (13.5)	
Average income (\$1000/yr)	54.8 (19.0)	52.2 (13.1)	51.3 (12.0)	55.7 (19.5)	
PM-to-FM ratio	0.26 (0.22)	0.30 (0.29)	0.23 (0.14)	0.33 (0.33)	
# CHCs	4.4 (2.7)	4.4 (4.4)	4.5 (3.4)	4.3 (3.9)	
balance score	$B_{(l2)}$	= 2.5	$B_{(l2)}$	= 15.4	

²Dickinson LM, Beaty B, Fox C, Pace W, Dickinson WP, Emsermann C, Kempe A (2015). Pragmatic cluster randomized trials using covariate constrained randomization: a method for practice-based research networks. *Journal of the American Board of Family Medicine*

Implementation: R and Stata packages

The Stata Journal (yyyy)

vv, Number ii, pp. 1–23

cvcrand and cptest: Efficient design and analysis of cluster randomized trials

John A. Gallis Duke University Department of Biostatistics Duke Global Health Institute Durham, NC john.gallis@duke.edu

Fan Li Duke University Department of Biostatistics Durham, NC frank.li@duke.edu

Hengshi Yu University of Michigan Department of Biostatistics Ann Arbor, MI hengshi@umich.edu

Elizabeth L. Turner Duke University Department of Biostatistics Duke Global Health Institute Durham, NC liz.turner@duke.edu cvcrand: Efficient Design and Analysis of Clust

Constrained randomization by Raab and Butcher (2001) <doi:10.1002/ suitable for cluster randomized trials (CRTs) with a small number of cl based on the baseline values of some cluster-level covariates specified. through clustered permutation test introduced by Gail, et al. (1996) <doi SIM220%3E3.0.CO;2-Q>. Motivated from Li, et al. (2016) <doi:10.10 baseline values of cluster-level covariates and cluster permutation test

	Version:	0.0.1
	Depends:	R (≥ 3.3.1)
	Imports:	tableone
	Suggests:	<u>knitr, rmarkdown</u>
	Published:	2017-11-28
	Author:	Hengshi Yu [aut, cre], John A. Gallis [aut], Fan Li
	Maintainer:	Hengshi Yu <hengshi at="" umich.edu=""></hengshi>
	License:	<u>GPL-2</u> <u>GPL-3</u> [expanded from: GPL (\geq 2)]
_		

3. Two Lessons for Statistical Analysis

Lesson # 1: model-based inference

- Mixed-effects models
 - augment the linear model (or logistic model) with a random cluster effect
 - random effect terms describe the similarity between individual outcomes within a cluster (county)
- Should control for the prognostic baseline covariates balanced by constrained randomization (CR)⁶
 - model-based standard error ignores $CR \Rightarrow$ underpowered
- Basic principle: analysis should account for the design

⁶Li F, Turner E, Heagerty PJ, Murray DM, Vollmer W, Delong ER (2017). An evaluation of constrained randomization for the design and analysis of group-randomized trials with binary outcomes. *Stat Med*

Lesson # 2: permutation inference

- Basic idea:
 - Calculate a test statistic under the observed treatment assignment
 - Recompute the value of the test statistic under all other possible assignment \Rightarrow null distribution
 - Compare the observed test statistic to the null distribution \Rightarrow p-value
- Constrained randomization space should be used for valid inference ⁸
- Basic principle: analysis should account for the design

⁸Li F, Lokhnygina Y, Murray DM, Heagerty PJ, Delong ER (2016). An evaluation of constrained randomization for the design and analysis of group-randomized trials. *Stat Med*.

4. Summary

Summary

- Constrained randomization is a powerful technique to balance multiple, possibly continuous baseline covariates in small cluster randomized trials
 - avoid categorization of continuous covariates (v.s. stratification)
 - randomization not based on pairs; ICC calculation unaffected (v.s. matching)
- Software to perform constrained randomization is made available in Stata and R by Duke group
 - Stata cvcrand (CR) and cptest (permutation test)
 - R cvcrand (CR) and cptest (permutation test)
 - documentations on SSC and CRAN
- Analysis of trial results should account for the design

Look forward

- Balance is an important consideration in pragmatic cluster randomized trials (with a limited number of clusters)
- Only considered parallel cluster randomized trials, where the interventions are implemented concurrently for all clusters
 - not always logistically feasible
 - stepped wedge designs
- Balance may benefit between-cluster comparisons
 - Invited session at Society of Clinical Trials (SCT), May 2018
- Lots of open statistical questions still need to be addressed

Welcome questions or comments for

- Fan (Frank) Li: frank.li@duke.edu
- Elizabeth Turner, PhD: liz.turner@duke.edu
- Elizabeth DeLong, PhD: elizabeth.delong@duke.edu

Thank you