

Lessons Learned from the NIH Collaboratory Biostatistics and Design Core up to 2016

Andrea J Cook, PhD Senior Investigator Biostatistics Unit Group Health Research Institute

NIH Collaboratory Grand Rounds December 2, 2016

Acknowledgements

- NIH Collaboratory Coordinating Center Biostatisticians
 - Elizabeth Delong, PhD, Andrea Cook, PhD, Lingling Li, PhD and Fan Li, PhD
- NIH Collaboratory Project Biostatisticians
 - Patrick Heagerty, PhD, Bryan Comstock, MS, Susan Shortreed, PhD, Ken Kleinman, PhD, and William Vollmer, PhD
- NIH Methodologist
 - David Murray, PhD
- Funding

This work was supported by the NIH Health Care Systems Research Collaboratory (U54 AT007748) from the NIH Common Fund.

Common themes across Collaboratory Studies

- Study Design
- Analysis/Sample Size
 - Implications of Variable Cluster Size on Estimation and Power
- Randomization
- Outcome Ascertainment

Conclusions/Next Steps

STUDY DESIGN

Study Design: Cluster RCT

□ Mostly Cluster RCTs (except one)

- Randomization Unit:
 - Provider < Panel < Clinic < Region < Site
- □ Average Size of Cluster
 - Initial Proposals: Most large clinic level clusters
 - Goal: Smallest Unit without contamination
 - More clusters are better if possible
 - Smaller number of clusters increase sample size along with estimation issues (GEE)
 - Potential Solutions: Panel-level or physician-level

Cluster

- Randomize at cluster-level
- Most common, but not necessarily the most powerful or feasible
- Advantages:
 - Simple design
 - Easy to implement
- Disadvantages:
 - Need a large number of clusters
 - Not all clusters get the interventions
 - Interpretation for binary and survival outcomes:
 - Mixed models within cluster interpretation problematic
 - GEE marginal estimates interpretation, but what if you are interested in within cluster changes?

□ Cluster with Cross-over

- Randomize at cluster but cross to other intervention assignment midway
- Feasible if intervention can be turned off and on without "learning" happening
- Alternative: baseline period without intervention and then have half of the clusters turn on

	Cluster	Period 1	Period 2				
	1	IN	IL				
Simple	2	UC					
Cluster	uster 3 UC						
	4	INT					
Cluster With Crossover	1	INT	UC				
	2	UC	INT				
	3	UC	INT				
	4	INT	UC				
Cluster With Baseline	1	UC	INT				
	2	UC UC					
	3	UC UC					
	4	UC	INT				

- Cluster with Cross-over
 - Advantages:
 - Can make within cluster interpretation
 - Potential to gain power by using within cluster information
 - Disadvantages:
 - Contamination can yield biased estimates especially for the standard cross-over design
 - May not be feasible to switch assignments or turn off intervention
 - Not all clusters have the intervention at the end of the study

- □ Stepped Wedge Design
 - Randomize timing of when the cluster is turned on to intervention
 - Staggered cluster with crossover design
 - Temporally spaces the intervention and therefore can control for system changes over time

	Cluster	Baseline	Period 1	Period 2	Period 3	Period 4
Stepped	3	UC	INT	INT	INT	INT
	2	UC	UC	INT	INT	INT
Wedge	1	UC	UC	UC	INT	INT
	4	UC	UC	UC	UC	INT

- □ Stepped Wedge Design
 - Advantages:
 - All clusters get the intervention
 - Controls for external temporal trends
 - Make within cluster interpretation if desired
 - Disadvantages:
 - Contamination can yield biased estimates
 - Heterogeneity of Intervention effects across clusters can
 be difficult to handle analytically
 - Special care of how you handle random effects in the model
 - Relatively new and available power calculation software is relatively limited

ANALYSIS/SAMPLE SIZE

Analysis Implications

- What are you making inference to?
 - Compare intervention across clinics
 - Marginal cluster-level effect
 - Compare within-clinic intervention effect
 - Within-clinic effect
 - Compare intervention effect across patients
 - Marginal patient-level effect
 - Compare an in-between cluster and patient-level effect

DeLong, E, Cook, A, and NIH Biostatistics/Design Core (2014) Unequal Cluster Sizes in Cluster-Randomized Clinical Trials, *NIH Collaboratory Knowledge Repository*.

Cook, AJ, Delong, E, Murray, DM, Vollmer, WM, and Heagerty, PJ (2016) Statistical lessons learned for designing cluster randomized pragmatic clinical trials from the NIH Health Care Systems Collaboratory Biostatistics and Design Core *Clinical Trials* **13(5)** 504-512.

□ What is the scientific question of interest?

- Marginal cluster-level effect
 - "What is the average expected clinic benefit if all clinics in the health system changed to the new intervention relative to Usual Care?"
- □ Within-clinic effect
 - "What is the expected benefit if a given clinic implements the new intervention relative to Usual Care?"
- □ Marginal patient-level effect
 - "What is the average expected patient benefit if all the clinics in the health system changed to the new intervention relative to Usual Care?"

□ Simplified Example:

- *Y_{ci}* is a binary outcome for patient *i* at clinic *c*
- n_c is the number of patients at clinic c
- X_c is 1 if clinic c was randomized to intervention or 0
- Estimate a simple marginal clinic-level effect (difference in clinic means amongst those randomized to intervention relative to those not randomized)

$$\hat{\Delta}^{c} = \frac{\sum_{c=1}^{N} \hat{\mu}_{c} X_{c}}{\sum_{c=1}^{N} X_{c}} - \frac{\sum_{c=1}^{N} \hat{\mu}_{c} (1 - X_{c})}{\sum_{c=1}^{N} (1 - X_{c})}$$

where $\hat{\mu}_c = \sum_{i=1}^{n_c} \frac{Y_{ci}}{n_c}$ is the mean outcome at clinic *c*

□ Simplified Example:

- Y_{ci} is a binary outcome for patient *i* at clinic *c*
- n_c is the number of patients at clinic c
- X_c is 1 if clinic c was randomized to intervention or 0
- Estimate a simple marginal patient-level effect (difference in patients amongst those clinics randomized to intervention relative to those not randomized)

$$\hat{\Delta}^{p} = \frac{\sum_{c=1}^{N} \sum_{i=1}^{n_{c}} Y_{ci} X_{c}}{\sum_{c=1}^{N} X_{c} n_{c}} - \frac{\sum_{c=1}^{N} \sum_{i=1}^{n_{c}} Y_{ci} (1 - X_{c})}{\sum_{c=1}^{N} (1 - X_{c}) n_{c}}$$

Patients are weighted equally and clustering is really just nuisance in terms of variance and not of interest

□ Some ways to estimate these quantities in practice

- Marginal cluster-level effect
 - □ GEE with weights the inverse of the cluster size with independent correlation structure and robust variance
- Compare within-clinic intervention effect
 - GLMM but need to get correlation structure correct but most often just a cluster random effect
- Marginal patient-level effect
 - GEE with no weights with independent correlation structure and robust variance
- □ In-between cluster and patient-level effect
 - GEE with no weights but exchangeable cluster correlation structure and robust variance
 - Exchangeable weights based on statistical information, but not necessarily the most interpretable

Sample Size: Variable Cluster Size

- Sample Size calculations need to take variable cluster size into account
 - Design effects (amount sample size is inflated due to cluster randomization relative to individual patient randomization) are different
 - Depends on the analysis of choice and the estimate of interest

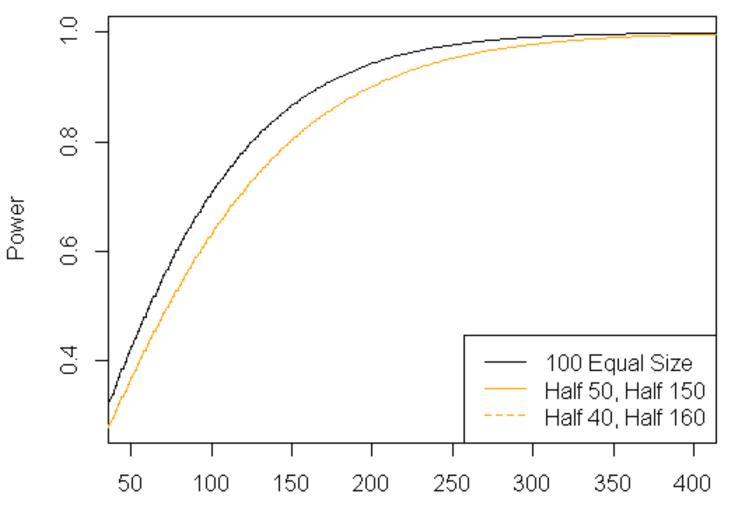
□ Example: Estimating marginal clinic-level mean difference

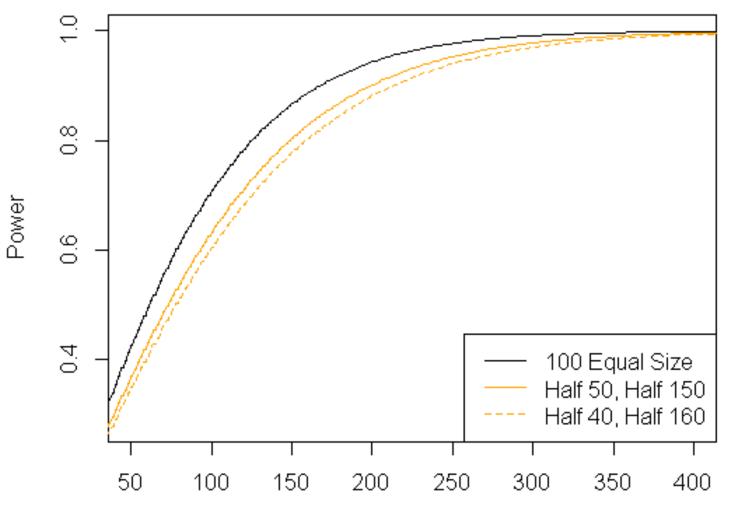
Design effect:

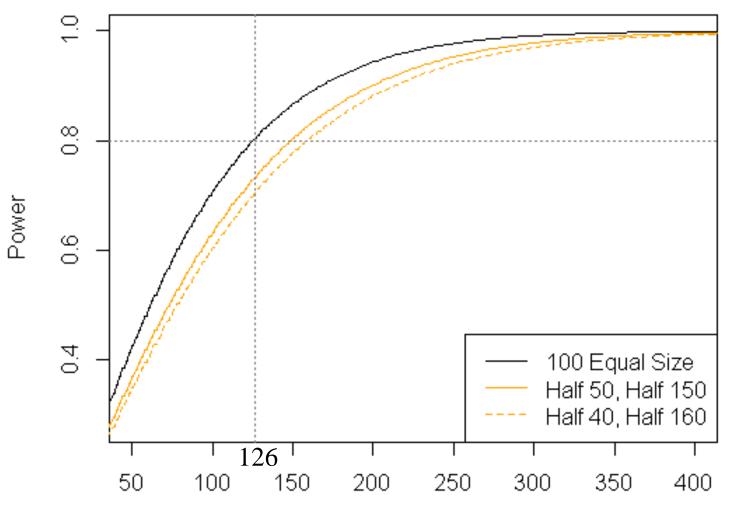
$$1 + \left(\frac{\sum_{c=1}^{N} n_c^2}{\sum_{c=1}^{N} n_c} - 1\right)\rho > 1 + (n_c - 1)\rho \text{ where } n_c \text{ is a constant}$$

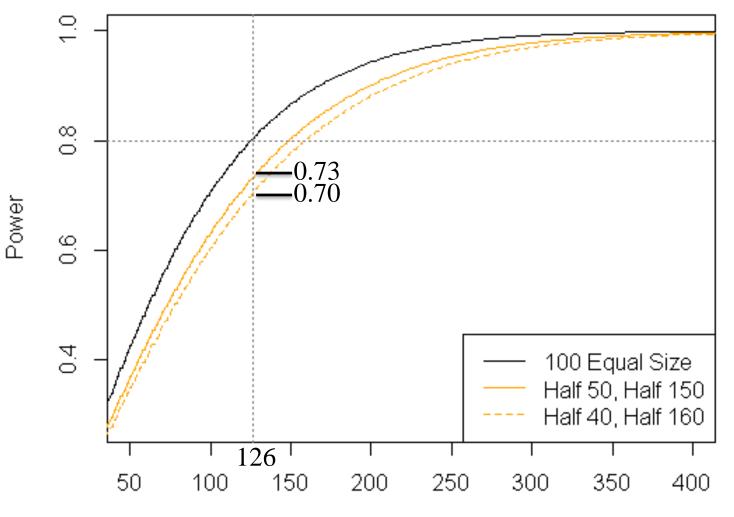
DeLong, E, Lokhnygina, Y and NIH Biostatistics/Design Core (2014) The Intraclass Correlation Coefficient (ICC), *NIH Collaboratory Knowledge Repository*.

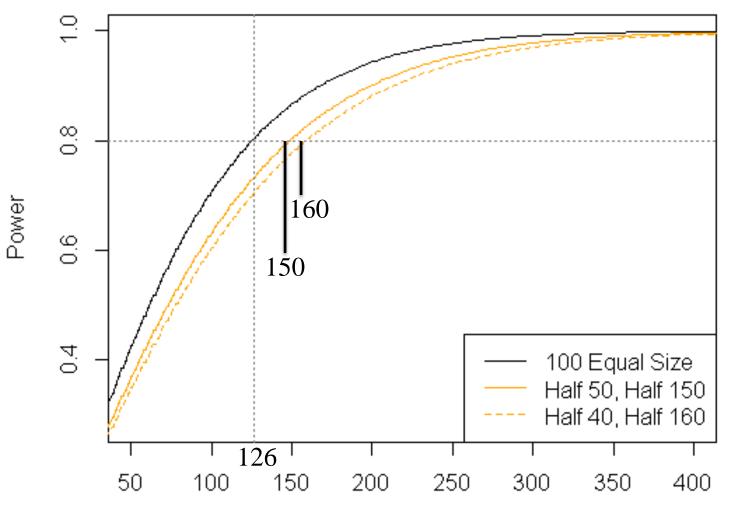
Eldridge, S.M., Ashby, D., and Kerry, S. (2006) Sample size for cluster randomized trials: effect of coefficient of variation of size and analysis method. *Int J Epi* **35**:1292-1300.











RANDOMIZATION

Randomization

- Crude randomization not preferable with smaller number of clusters or need balance for subgroup analyses
- □ How to balance between cluster differences?
 - Paired
 - How to choose the pairs best to control for important predictors?
 - Implications for analyses and interpretation
 - Stratification
 - Stratify analysis on a small set of predictors
 - Can ignore in analyses stage if desired
 - Other Alternatives

DeLong, E, Li, L, Cook, A, and NIH Biostatistics/Design Core (2014) Pair-Matching vs stratification in Cluster-Randomized Trials, *NIH Collaboratory Knowledge Repository*.

Constrained Randomization

□ Balances a large number of characteristics

- □ Concept
 - 1. Simulate a large number of cluster randomization assignments (A or B but not actual treatment)
 - 2. Remove duplicates
 - 3. Across these simulated randomizations assignments assess characteristic balance
 - 4. Restrict to those assignments with balance
 - 5. Randomly choose from the "constrained" pool a randomization scheme.
 - 6. Randomly assign treatments to A or B

Constrained Randomization

- Is Constrained randomization better then unconstrained randomization
- How many valid randomization schemes do you need to be able to conduct valid inference?
- Do you need to take into account randomization scheme in analysis?
 - Ignore Randomization
 - Adjust for variables in regression
 - Permutation inference

Constrained Randomization

- Is Constrained randomization better then unconstrained randomization
- How many valid randomization schemes do you need to be able to conduct valid inference?
- Do you need to take into account randomization scheme in analysis?
 - Ignore Randomization
 - Adjust for variables in regression
 - Permutation inference

Conduct a simulation study to assess these properties

Continuous Outcome Simulation Design

- □ Outcome Type: Normal
- Randomization Type: Simple versus Constrained
- □ Inference Type: Exact (Permutation) versus Model-Based (F-Test)
- Adjustment Type: Unadjusted versus Adjusted
- Clusters: Balanced designs, but varied size and number
- □ Correlation: Varied ICC from 0.01 to 0.05
- Potential Confounders: Varied from 1 to 4

Li, F., Lokhnygina, Y., Murray, D, Heagerty, P., and Delong, ER. (2016) An evaluation of constrained randomization for the design and analysis of group-randomized trials *Stat Med* **35(10**): 1565-1579.

Continuous Outcome Simulation Results

- Adjusted F-test and the permutation test perform similar and slightly better for constrained versus simple randomization.
- □ Under Constrained Randomization:
 - Unadjusted F-test is conservative
 - Unadjusted Permutation holds type I error (unless candidate set size is not too small)
 - Unadjusted Permutation more powerful then Unadjusted F-Test
- Recommendation: Constrained randomization with enough potential schemes (>100), but still adjust for potential confounders

Binary Outcome Simulation Design

- □ Outcome Type: Binary
- Randomization Type: Simple versus Constrained
- □ Inference Type: Exact (Permutation) versus Model-Based (F-Test)
- Adjustment Type: Unadjusted versus Adjusted
- Clusters: Balanced designs, but varied size and number
- □ Correlation: Varied ICC from 0.01 to 0.05
- Potential Confounders: Varied from 1 to 4

Li, F., Turner, E., Heagerty, P., Murray, D., Vollmer, W., and Delong, ER. An evaluation of constrained randomization for the design and analysis of group-randomized trials with binary outcomes (Under Review)

Binary Outcome Simulation Results

- Adjusted F-test based on maximum likelihood has liberal size
- Adjusted F-test based on linearization and the permutation test are valid and perform similarly and slightly better for constrained versus simple randomization in terms of power
- □ Under Constrained Randomization:
 - Unadjusted F-test is conservative
 - Unadjusted Permutation more powerful then Unadjusted F-Test
- Recommendation: Constrained randomization with enough potential schemes (>100), but still adjust for potential confounders; avoid using adjusted F-test based on maximum likelihood (PROC NLMIXED) due to its unsatisfactory small sample performance

OUTCOME ASCERTAINMENT

Outcome Ascertainment

Most trials use Electronic Healthcare Records (EHR) to obtain Outcomes

- Data NOT collected for research purposes
- If someone stays enrolled in healthcare system assume that if you don't observe the outcome it didn't happen
 - In closed system this is likely ok
 - Depends upon cost of treatment (likely to get a bill the more the treatment costs)

Outcome Ascertainment (Cont)

□ Do you need to validate the outcomes you do observe?

- Depends on the Outcome (PPV, sensitivity)
- Depends on the cost (two-stage design?)
- □ How do you handle Missing Outcome Data?
 - Leave healthcare system
 - Type of Missing Data: Administrative missingness (MCAR), MAR or non-ignorable?
 - Amount of Missing Data: how stable is your population being studied?
 - Depends on the condition and population being studied.

DeLong, E, Li, L, Cook, A, and NIH Biostatistics/Design Core (2014) Key Issues in Extracting Usable Data from Electronic Health Records for Pragmatic Clinical Trials, *NIH Collaboratory Knowledge Repository*

Conclusions

- Pragmatic Trials are important to be able to move research quickly into practice
- □ Pragmatic Trials add Complication
 - First Question: Can this study be answered using a pragmatic trial approach??
 - Study Design is essential and needs to be flexible
 - Choice of which quantity to estimate should be made based on the scientific question of interest, but statistical trade-offs, including power, must also be considered.
 - Variability in cluster sizes have potentially major implications for power and analysis approach
- □ Lots of open statistical questions still to be addressed