
Lessons Learned from the NIH Collaboratory 

Biostatistics and Design Core up to 2016 

Andrea J Cook, PhD

Senior Investigator

Biostatistics Unit

Group Health Research Institute

NIH Collaboratory Grand Rounds December 2, 2016



Acknowledgements

• NIH Collaboratory Coordinating Center Biostatisticians

• Elizabeth Delong, PhD, Andrea Cook, PhD, Lingling Li, PhD and 
Fan Li, PhD

• NIH Collaboratory Project Biostatisticians

• Patrick Heagerty, PhD, Bryan Comstock, MS, Susan Shortreed, 
PhD, Ken Kleinman, PhD, and William Vollmer, PhD

• NIH Methodologist

• David Murray, PhD

• Funding

This work was supported by the NIH Health Care Systems Research 
Collaboratory (U54 AT007748) from the NIH Common Fund.



Outline

 Common themes across Collaboratory Studies

 Study Design

 Analysis/Sample Size

 Implications of Variable Cluster Size on Estimation and Power

 Randomization

 Outcome Ascertainment

 Conclusions/Next Steps



STUDY DESIGN



Study Design: Cluster RCT

 Mostly Cluster RCTs (except one)

 Randomization Unit:

• Provider < Panel < Clinic < Region < Site

 Average Size of Cluster

 Initial Proposals: Most large clinic level clusters

 Goal: Smallest Unit without contamination

• More clusters are better if possible

 Smaller number of clusters increase sample size along 

with estimation issues (GEE)

 Potential Solutions: Panel-level or physician-level



Study Design: Which Cluster 

Design?

 Cluster

 Randomize at cluster-level 

 Most common, but not necessarily the most powerful or feasible

 Advantages:

• Simple design

• Easy to implement

 Disadvantages:

• Need a large number of clusters

• Not all clusters get the interventions

• Interpretation for binary and survival outcomes:

• Mixed models within cluster interpretation problematic

• GEE marginal estimates interpretation, but what if you 

are interested in within cluster changes?



Study Design: Which Cluster 

Design?

 Cluster with Cross-over

 Randomize at cluster but cross to other intervention assignment 

midway

 Feasible if intervention can be turned off and on without 

“learning” happening

 Alternative: baseline period without intervention and then have 

half of the clusters turn on



Study Design: Which Cluster 

Design?

Cluster Period 1 Period 2

1

2

3

4

1 INT UC

2 UC INT

3 UC INT

4 INT UC

1 UC INT

2 UC UC

3 UC UC

4 UC INT

Simple 

Cluster

Cluster 

With 

Crossover

Cluster 

With 

Baseline

INT

UC

UC

INT



Study Design: Which Cluster 

Design?

 Cluster with Cross-over

 Advantages:

• Can make within cluster interpretation

• Potential to gain power by using within cluster information 

 Disadvantages:

• Contamination can yield biased estimates especially for 

the standard cross-over design

• May not be feasible to switch assignments or turn off 

intervention

• Not all clusters have the intervention at the end of the 

study 



Study Design: Which Cluster 

Design?

 Stepped Wedge Design

 Randomize timing of when the cluster is turned on to 

intervention 

 Staggered cluster with crossover design

 Temporally spaces the intervention and therefore can control for 

system changes over time



Study Design: Which Cluster 

Design?

Cluster Baseline Period 1 Period 2 Period 3 Period 4

3 UC INT INT INT INT

2 UC UC INT INT INT

1 UC UC UC INT INT

4 UC UC UC UC INT

Stepped 

Wedge



Study Design: Which Cluster 

Design?

 Stepped Wedge Design

 Advantages:

• All clusters get the intervention

• Controls for external temporal trends

• Make within cluster interpretation if desired

 Disadvantages:

• Contamination can yield biased estimates

• Heterogeneity of Intervention effects across clusters can 

be difficult to handle analytically 

• Special care of how you handle random effects in the 

model 

• Relatively new and available power calculation software is 

relatively limited



ANALYSIS/SAMPLE SIZE



Analysis: Variable Cluster Size

 Analysis Implications

 What are you making inference to?

• Compare intervention across clinics

• Marginal cluster-level effect

• Compare within-clinic intervention effect

• Within-clinic effect

• Compare intervention effect across patients

• Marginal patient-level effect

• Compare an in-between cluster and patient-level effect

DeLong, E, Cook, A, and NIH Biostatistics/Design Core (2014) Unequal Cluster Sizes in Cluster-

Randomized Clinical Trials, NIH Collaboratory Knowledge Repository.

Cook, AJ, Delong, E, Murray, DM, Vollmer, WM, and Heagerty, PJ (2016) Statistical lessons learned for 

designing cluster randomized pragmatic clinical trials from the NIH Health Care Systems Collaboratory

Biostatistics and Design Core Clinical Trials 13(5) 504-512.



Analysis: Variable Cluster Size

 What is the scientific question of interest?

 Marginal cluster-level effect

• “What is the average expected clinic benefit if all clinics in 

the health system changed to the new intervention relative 

to Usual Care?”

 Within-clinic effect

• “What is the expected benefit if a given clinic implements 

the new intervention relative to Usual Care?”

 Marginal patient-level effect

• “What is the average expected patient benefit if all the 

clinics in the health system changed to the new intervention 

relative to Usual Care?”



Analysis: Variable Cluster Size

 Simplified Example:

 𝑌𝑐𝑖 is a binary outcome for patient i at clinic c

 𝑛𝑐 is the number of patients at clinic c

 𝑋𝑐 is 1 if clinic c was randomized to intervention or 0

 Estimate a simple marginal clinic-level effect (difference in 

clinic means amongst those randomized to intervention 

relative to those not randomized)

 ∆𝑐=
 𝑐=1

𝑁  𝜇𝑐𝑋𝑐

 𝑐=1
𝑁 𝑋𝑐

−
 𝑐=1

𝑁  𝜇𝑐(1 − 𝑋𝑐)

 𝑐=1
𝑁 (1 − 𝑋𝑐)

where  𝜇𝑐 =  𝑖=1
𝑛𝑐 𝑌𝑐𝑖

𝑛𝑐
is the mean outcome at clinic c



Analysis: Variable Cluster Size

 Simplified Example:

 𝑌𝑐𝑖 is a binary outcome for patient i at clinic c

 𝑛𝑐 is the number of patients at clinic c

 𝑋𝑐 is 1 if clinic c was randomized to intervention or 0

 Estimate a simple marginal patient-level effect (difference 

in patients amongst those clinics randomized to 

intervention relative to those not randomized)

 ∆𝑝=
 𝑐=1

𝑁  𝑖=1
𝑛𝑐 𝑌𝑐𝑖𝑋𝑐

 𝑐=1
𝑁 𝑋𝑐 𝑛𝑐

−
 𝑐=1

𝑁  𝑖=1
𝑛𝑐 𝑌𝑐𝑖(1 − 𝑋𝑐)

 𝑐=1
𝑁 (1 − 𝑋𝑐) 𝑛𝑐

Patients are weighted equally and clustering is really just 

nuisance in terms of variance and not of interest



Analysis: Variable Cluster Size

 Some ways to estimate these quantities in practice

 Marginal cluster-level effect

 GEE with weights the inverse of the cluster size with 

independent correlation structure and robust variance

 Compare within-clinic intervention effect

 GLMM but need to get correlation structure correct but 

most often just a cluster random effect

 Marginal patient-level effect

 GEE with no weights with independent correlation structure 

and robust variance

 In-between cluster and patient-level effect

 GEE with no weights but exchangeable cluster correlation 

structure and robust variance 

 Exchangeable weights based on statistical information, but 

not necessarily the most interpretable



Sample Size: Variable Cluster Size

 Sample Size calculations need to take variable cluster size 

into account 

 Design effects (amount sample size is inflated due to 

cluster randomization relative to individual patient 

randomization) are different

 Depends on the analysis of choice and the estimate of 

interest

 Example: Estimating marginal clinic-level mean difference

 Design effect:

1 +
 𝑐=1

𝑁 𝑛𝑐
2

 𝑐=1
𝑁 𝑛𝑐

− 1 𝜌 > 1 + 𝑛𝑐 − 1 𝜌 where 𝑛𝑐 is a constant

DeLong, E, Lokhnygina, Y and NIH Biostatistics/Design Core (2014) The Intraclass Correlation Coefficient (ICC), NIH 

Collaboratory Knowledge Repository.

Eldridge, S.M., Ashby, D., and Kerry, S. (2006) Sample size for cluster randomized trials: effect of coefficient of variation

of size and analysis method. Int J Epi 35:1292-1300.



Figure: Power Curve 

ICC is 0.03 and effect size 0.1𝝈
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RANDOMIZATION



Randomization

 Crude randomization not preferable with smaller number of 

clusters or need balance for subgroup analyses

 How to balance between cluster differences?

 Paired

• How to choose the pairs best to control for important 

predictors?

• Implications for analyses and interpretation

 Stratification

• Stratify analysis on a small set of predictors

• Can ignore in analyses stage if desired

 Other Alternatives

DeLong, E, Li, L, Cook, A, and NIH Biostatistics/Design Core (2014) Pair-Matching vs stratification in 

Cluster-Randomized Trials, NIH Collaboratory Knowledge Repository.



Constrained Randomization

 Balances a large number of characteristics

 Concept

1. Simulate a large number of cluster randomization 

assignments (A or B but not actual treatment)

2. Remove duplicates

3. Across these simulated randomizations assignments assess 

characteristic balance

4. Restrict to those assignments with balance

5. Randomly choose from the “constrained” pool a randomization 

scheme.

6. Randomly assign treatments to A or B



Constrained Randomization

 Is Constrained randomization better then unconstrained 

randomization

 How many valid randomization schemes do you need to be able 

to conduct valid inference?

 Do you need to take into account randomization scheme in 

analysis?

 Ignore Randomization

 Adjust for variables in regression

 Permutation inference



Constrained Randomization

 Is Constrained randomization better then unconstrained 

randomization

 How many valid randomization schemes do you need to be able 

to conduct valid inference?

 Do you need to take into account randomization scheme in 

analysis?

 Ignore Randomization

 Adjust for variables in regression

 Permutation inference

Conduct a simulation study to assess these properties



Continuous Outcome Simulation 

Design

 Outcome Type: Normal

 Randomization Type: Simple versus Constrained

 Inference Type: Exact (Permutation) versus Model-Based (F-Test)

 Adjustment Type: Unadjusted versus Adjusted

 Clusters: Balanced designs, but varied size and number

 Correlation: Varied ICC from 0.01 to 0.05

 Potential Confounders: Varied from 1 to 4

Li, F., Lokhnygina, Y., Murray, D, Heagerty, P., and Delong, ER. (2016) An evaluation of constrained 

randomization for the design and analysis of group-randomized trials Stat Med 35(10): 1565-1579.



Continuous Outcome Simulation 

Results

 Adjusted F-test and the permutation test perform similar and 

slightly better for constrained versus simple randomization.

 Under Constrained Randomization:

 Unadjusted F-test is conservative

 Unadjusted Permutation holds type I error (unless candidate set 

size is not too small)

 Unadjusted Permutation more powerful then Unadjusted F-Test

 Recommendation: Constrained randomization with enough 

potential schemes (>100), but still adjust for potential confounders



Binary Outcome Simulation Design

 Outcome Type: Binary

 Randomization Type: Simple versus Constrained

 Inference Type: Exact (Permutation) versus Model-Based (F-Test)

 Adjustment Type: Unadjusted versus Adjusted

 Clusters: Balanced designs, but varied size and number

 Correlation: Varied ICC from 0.01 to 0.05

 Potential Confounders: Varied from 1 to 4

Li, F., Turner, E., Heagerty, P., Murray, D., Vollmer, W., and Delong, ER. An evaluation of constrained 

randomization for the design and analysis of group-randomized trials with binary outcomes (Under 

Review)



Binary Outcome Simulation Results

 Adjusted F-test based on maximum likelihood has liberal size

 Adjusted F-test based on linearization and the permutation test are 

valid and perform similarly and slightly better for constrained 

versus simple randomization in terms of power

 Under Constrained Randomization:

 Unadjusted F-test is conservative

 Unadjusted Permutation more powerful then Unadjusted F-Test

 Recommendation: Constrained randomization with enough 

potential schemes (>100), but still adjust for potential confounders; 

avoid using adjusted F-test based on maximum likelihood (PROC 

NLMIXED) due to its unsatisfactory small sample performance



OUTCOME 

ASCERTAINMENT



Outcome Ascertainment

 Most trials use Electronic Healthcare Records (EHR) to obtain 

Outcomes

 Data NOT collected for research purposes

 If someone stays enrolled in healthcare system - assume that if 

you don’t observe the outcome it didn’t happen

 In closed system this is likely ok

 Depends upon cost of treatment (likely to get a bill the more the 

treatment costs) 



Outcome Ascertainment (Cont)

 Do you need to validate the outcomes you do observe?

 Depends on the Outcome (PPV, sensitivity)

 Depends on the cost (two-stage design?)

 How do you handle Missing Outcome Data?

 Leave healthcare system

• Type of Missing Data: Administrative missingness (MCAR), 

MAR or non-ignorable?

• Amount of Missing Data: how stable is your population being 

studied?

 Depends on the condition and population being studied.  

DeLong, E, Li, L, Cook, A, and NIH Biostatistics/Design Core (2014) Key Issues in Extracting Usable 

Data from Electronic Health Records for Pragmatic Clinical Trials, NIH Collaboratory Knowledge 

Repository



Conclusions

 Pragmatic Trials are important to be able to move research quickly into 

practice

 Pragmatic Trials add Complication

 First Question: Can this study be answered using a pragmatic trial 

approach??

 Study Design is essential and needs to be flexible 

 Choice of which quantity to estimate should be made based on the 

scientific question of interest, but statistical trade-offs, including 

power, must also be considered. 

 Variability in cluster sizes have potentially major implications for 

power and analysis approach

 Lots of open statistical questions still to be addressed


