

Current Issues in the Design and Analysis of Stepped Wedge Trials

Jim Hughes

NIH PRAGMATIC TRIALS COLLABORATORY GRAND ROUNDS

DEC 1, 2023

<u>Outline</u>

1. Background

- 2. Key design considerations
- 3. Analysis recommendations

Stepped Wedge Design

- N clusters randomized to Q sequences
- Interest is in the "intervention effect"

Hemming K, Taljaard M. Reflection on modern methods: when is a stepped-wedge cluster randomized trial a good study design choice? International Journal of Epidemiology. 49:1043-1052, 2020.

Stepped Wedge Design

- Clustered data
- Intervention effect is partly confounded with Time
- More information on earlier compared to later exposure times

<u>Outline</u>

1. Background

2. Key design considerations

3. Analysis recommendations

Department of Biostatistics

Key Design Considerations

- 1. What is the estimand?
 - a. Population, treatment, endpoint, summary measure, intercurrent events¹
 - b. Impact of informative cluster size on estimands²
 - c. Impact of exposure time on treatment effect
- 2. What are the key sources of variation?
 - a. Variation between cluster means
 - b. Variation in temporal trend
 - c. Variation in treatment effect
- 3. How will outcome data be collected?
 - a. Cross-sectional design
 - b. Cohort design

¹ ICH E9 (R1) addendum on estimands and sensitivity analysis in clinical trials to the guideline on statistical principles for clinical trials. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e9-r1-addendum-estimands-sensitivity-analysis-clinicaltrials-guideline-statistical-principles_en.pdf ²Kahan et al. *International J Epidemiology* 52(1):107-118, 2023

How will the treatment effect the outcome?

- Magnitude of effect (key power consideration)
- Variation in effect over exposure time

- 1. Average treatment effect over exposure time?
- 2. Treatment effect at a point in time?
- 3. Average treatment effect after a (predefined) transition period?

Treatment effect not constant

 What happens if you assume the treatment effect is immediate and constant (IT model), but it's not?¹

¹Kenny et al. *Stat. Medicine* 41:4311-4339, 2022

A general approach (ETI model):

$$\theta = \sum_{s} w(s) * \delta(s)$$

w(s) = weight at exposure time s $\delta(s)$ = treatment effect at exposure time s

	Time							
	Period							
		1	2	3	4	5	6	7
	1	0	1	2	3	4	5	6
Sequence	2	0	0	1	2	3	4	5
	3	0	0	0	1	2	3	4
	4	0	0	0	0	1	2	3
	5	0	0	0	0	0	1	2
	6	0	0	0	0	0	0	1

$$\theta = \sum_{s} w(s) * \delta(s)$$

Three possible estimands:

LTE: w = (0,0,0,0,0,1)

ATE w transition: w = (0,0,1,1,1,1)/4

$$\theta = \sum_{s} w(s) * \delta(s)$$

- The standard IT estimator also has the above form e.g. if one assumes working independence (GEE), the weights end up being w = (6,5,4,3,2,1)/21
- This leads to a more efficient estimate than the ATE **if the IT assumption holds**.
- BUT likely does not correspond to any estimand of interest if the IT assumption is violated

- Estimating a separate treatment effect for each exposure lag is robust, but inefficient.
- Additional assumptions can gain efficiency (at the cost of possible loss of robustness)
- Example:
 - δ(1) = treatment effect at exposure times 1 and 2
 - δ(2) = treatment effect at exposure times 3 – 6
 - estimand is $\theta = \delta(2)$

				Tim	ie Pei	riod		
		1	2	3	4	5	6	7
	1	0	1	1	2	2	2	2
	2	0	0	1	1	2	2	2
Sequence	3	0	0	0	1	1	2	2
	4	0	0	0	0	1	1	2
	5	0	0	0	0	0	1	1
	6	0	0	0	0	0	0	1
Sequence	2 3 4 5 6	0 0 0 0	0 0 0 0	1 0 0 0	1 1 0 0 0	2 1 1 0 0	2 2 1 1 0	

Considerations in choosing estimand

1) What is scientifically meaningful?

- Is there prior information on form of exposure time curve?
- 2)Robustness
- 3)Efficiency

Key Sources of Variation

Cluster means: How much variation do you expect in the cluster means (in the absence of treatment)?

- **Treatment effect:** How much variation do you expect in the treatment effect from cluster to cluster?
- **Temporal trend:** In the absence of treatment, how much variation do you expect in the temporal trend from cluster to cluster?

Department of Biostatistics

Key Sources of Variation

For power calculations ...

- Always include a random cluster effect
 - Always include a random individual effect for cohort designs
- "Better" to include too many random effects in power calculation than too few
- Get random effect variances from
 - Prior data
 - Expert opinion¹

Department of Biostatistics

ADDRESS – BP trial

	Study period (year/month)													
		Yea	ar 1		Year 2			Year 3			Year 4			
Sequence	3	6	9	12	3	6	9	12	3	6	9	12	3	6
1	TAU	TAU	TAU	TAU	P1	P2	P3	P4	F5	F6	F7	F8	F9	F10
2		TAU	TAU	TAU	TAU	P1	P2	P3	P4	F5	F6	F7	F8	F9
3			TAU	TAU	TAU	TAU	P1	P2	P3	P4	F5	F6	F7	F8
4				TAU	TAU	TAU	TAU	P1	P2	P3	P4	F5	F6	F7
5					TAU	TAU	TAU	TAU	P1	P2	P3	P4	F5	F6

- Treatment is an implementation strategy designed to promote adoption of an evidence-based intervention for the treatment of uncontrolled hypertension.
- 5 sequences, 5 health care facilities per sequence
- 14 periods, categorized as Treatment as Usual (TAU), Treatment (P1 P4), Followup (F5 – F10)
- Cohort of 20 individuals/cluster with uncontrolled hypertension; outcome is blood pressure control (yes/no)

Department of Biostatistics

Example

Parameter description	Value				
Number of observations per facility per time period	n = 20				
Outcome percent during TAU period	40	%			
Outcome percent during exposure times three (P3) and four (P4)	60	9%			
Time trend (on logit scale)	.08/period				
	Variance (on logit scale)	Intra-cluster correlation			
Cluster variance/Between-period ICC	0.1316	0.022			
Cluster*time variance/Within-period ICC	0.1974	0.054			
Individual variance/Within-individual ICC	2.5	0.430			

- Variance component estimates from prior data
- Study time trend must be specified for non-linear models (ie logit)

Department of Biostatistics

Example

• R package swCRTdesign used for power calculations (also can use NIH RMR SWGRT sample size calculator)

Comparison	Comment	Power
TAU vs (P3 + P4)/2	Primary comparison	0.82
TAU vs (P3 + P4)/2	No data at P1, P2	0.73
TAU vs (F5+F6+F7+F8+F9+F10)/6		0.39
TAU vs (P3,P4)	Piece-wise constant treatment effect for (P1 – P2), (P3 – P4), (F5 – F10)	.94
TAU vs (P3,P4)	Piece-wise constant treatment effect for (P1 – P2), (P3 – P4), (F5), (F6), (F7), F(8), F(9), (F10)	.87

Department of Biostatistics

Design recommendations

1) Don't make IT assumption unless well-justified

- Consider both exposure time variation and estimand of interest
- Additional assumptions (ie piece-wise constant effect) can increase power at cost of robustness
- 2) If a transition period is planned, include data from the transition period
- 3) If estimand is the effect at a point in time, maximize the number of observations at that exposure time
- 4) Including more variance components in power calculation reduces possibility of an underpowered trial
- 5) Power calculations in SW trials can sometimes seem counterintuitive!

<u>Outline</u>

- 1. Background
- 2. Key design considerations
- 3. Analysis recommendations

Common Analysis Approaches

Most analyses rely on a parametric model of the form _____

$$g(E(Y_{ijk})) = \beta(t_{ij}) + \delta(s_{ij})x_{ij}$$

Var(Y_{ijk}) specification

cluster i time j individual k

- Link function (eg identity, logit) $g(\cdot)$
- Model for changes over study time $\beta(t_{ij})$
- Model for changes over exposure time $\delta(s_{ij})$
- Model for $Var(Y_{ijk})$
- GLMM, GEE

Key questions/issues

- What model for study time?
- What model for exposure time?
- What variance structure?
- Other considerations

What model for study time?

- If $\beta(t_{ij})$ misspecified $\rightarrow \delta$ likely biased
- Number of study time intervals is ...
 - Small maintain maximum flexibility by using indicators for each time period
 - Large (or continuous) little research; maintain flexibility e.g. spline

What model for exposure time?

- If $\delta(s)$ misspecified \rightarrow misleading estimates of the treatment effect
- Fitting a separate δ for each *s* is most robust

$$\hat{\theta} = \sum w(s)\delta(s) = w\hat{\delta}$$
$$Var(\hat{\theta}) = wVar(\hat{\delta})w^{T}$$

- Fitting piece-wise constant (or spline) for $\delta(s)$ can improve efficiency
- Estimates are straightforward to obtain in R or other packages (see extra slide)

What variance structure?

- GLMM variance components specified
 - Misspecification does not create bias
 - But can result in over or under estimation of $Var(\hat{\delta})^1$
 - Too many variance components "better" than too few (conservative)
- GEE "working" variance specified
 - Robust to misspecification of variance
 - May be inefficient

¹Voldal et al *Stat Medicine 41:1751-1766*, 2022

What variance structure?

• Including all variance components in GLMM can lead to conservative SE

Other considerations

- Nonparametric & permutation-based methods
- Small number of clusters
 - With "small" numbers of clusters hypothesis tests may have inflated type I error rates¹
 - Use small sample correction e.g. Kenward-Rodger
- Informative cluster size
 - Need to be careful about weighting and variancespecification to ensure correct estimand²

¹Thompson et al. *Stat in Medicine* 30: 425–439, 2021 ²Kahan et al. *International J Epidemiology* 52:107-118, 2023

SW Analysis Recommendations

- 1) Fit flexible study time effect (e.g. categorical time or spline)
- 2) Avoid fitting IT model unless very confident that treatment effect is immediate and constant
 - Exposure time indicator model most robust
 - Piecewise constant or spline model may increase power
- 3) Better to overfit than underfit random effects
 - Overfitting gives conservative SE
- 4) Use small sample correction if necessary

Questions?

Department of Biostatistics

Estimate treatment effect ADDRESS-BP

```
## Assume ADDRESS-BP trial design and interesting in estimating effect at P3-P4
## Assume dataset with variables response, time, timeontx, cluster
ftime = factor(time)
ftimeontx = factor(timeontx)
ftx3 = factor(ifelse(timeontx==0, 0,
             ifelse(timeontx<=2,1,ifelse(timeontx<=4,2,3))))
## Fitting a separate indicator for each exposure time s
##
rslt = lmer(response ~ ftime + ftimeontx + (1|fcluster))
# First 14 fixed effects correspond to grand mean and time
# Compare P3 + P4 to TAU
w=c(0,0,1,1,0,0,0,0,0)
est = sum(fixef(rslt)[15:24] * w)
se = sqrt(t(w) %*% vcov(rslt) [15:24, 15:24] %*% w))
##Fitting a piecewise constant (P1-P2) (P3-P4) (F5-F10)
##
rslt = lmer(response ~ ftime + ftx3 + (1|fcluster))
# First 14 fixed effects correspond to grand mean and time
# Assume constant tx effect for P3, P4 and compare to TAU
est = fixef(rslt)[16]
se = sqrt(vcov(rslt)[16, 16])
```


What's happening?

- Weights sum to 1 (as expected) but ...weights can be > 1 and/or negative!
- Also, study time effect is biased, so treatment effect is compared to the wrong baseline