Exploring Digital and Mobile Health Approaches in Patient-Oriented Research: Pearls & Pitfalls

Anish Agarwal MD, MPH, MS Asst. Professor & Chief Wellness Officer | Department of Emergency Medicine Clinical Innovation Manager | Center for Health Care Innovation University of Pennsylvania

> Anish.Agarwal@pennmedicine.upenn.edu @agarwalEM

Disclosures

- Funding: AHRQ/PCORI, NIDA, NIMH, & the FDA
- Career: EM physician in an urban, academic environment
- Personal:
 - Deep interest in connecting with individuals \bigcirc
 - Believe in rapid-cycle innovation and studies
 - Father of two boys (5 and 2 yo) in the \bigcirc pandemic

Objectives:

Briefly frame the concepts of digital and mobile health Personal examples of digital applications and methods in patientoriented research Successes, Failures, and the Future

Learning Health Systems, Personal Experiences & Research

- Academic, urban emergency medicine
- Health services researcher
- Patient-centered outcomes and engagement
- Rapidly inform clinical practice

Digital and Mobile Health

- Definition and landscape
- Rapidly evolving
- Integration across health platforms varies
- Disparities exist in access

Study:

RCT using wearable devices and digital participant engagement/data collection

Motivating and increasing physical activity remains important and challenging.

Original Investigation | Nutrition, Obesity, and Exercise

Effect of Gamification With and Without Financial Incentives to Increase Physical Activity Among Veterans Classified as Having Obesity or Overweight A Randomized Clinical Trial

Anish K. Agarwal, MD, MPH, MS; Kimberly J. Waddell, PhD; Dylan S. Small, PhD; Chalanda Evans, BS; Tory O. Harrington, MHCI; Rachel Djaraher, BS, RD; Ai Leen Oon, BA; Mitesh S. Patel, MD, MBA

Original Investigation | Nutrition, Obesity, and Exercise Effect of Gamification With and Without Financial Incentives to Increase Physical Activity Among Veterans Classified as Having Obesity or Overweight A Randomized Clinical Trial

Anish K. Agarwal, MD, MPH, MS; Kimberly J. Waddell, PhD; Dylan S. Small, PhD; Chalanda Evans, BS; Tory O. Harrington, MHCI; Rachel Djaraher, BS, RD; Ai Leen Oon, BA; Mitesh S. Patel, MD, MBA

POPULATION

109 Men. 71 Women

Adult veterans with a body mass index \geq 25 and access to a smartphone or tablet

Mean (SD) age, 56.5 (12.9) y

SETTINGS / LOCATIONS

INTERVENTION

60 Control

Use of wearable

step-counting

180 Participants randomized

60 Gamification with social support

Wearable device + 12-wk automated game with points. device, with no step goal game or support levels, and a social support partner engagement tracking mean step count

60 Loss-framed financial incentive Gamification with social

support + \$120 payment. with \$10 deducted weekly if step goals were not met

PRIMARY OUTCOME

Change in mean daily step count from the 2-wk baseline period to weeks 5-12 of the 12-wk intervention period, as measured by a wearable activity tracking device

Trial Design and Approach

Conduct a three arm RCT remotely using digital methods required key steps at enrollment, intervention, and follow-up.

Methods

Design

RCT testing gamification with social support +/- loss-framed financial incentive

Enrollment

Mailed letter of interest with follow up phone call to obtain informed consent and then sent <u>a wearable device</u>

Data Collection

Step count data from wearable device

+

Text message based interaction

Key Takeaways

Design

Requires daily access to a <u>smartphone or tablet</u>

Enrollment

Wearable devices

Research Letter

February 10, 2015

Accuracy of Smartphone Applications and Wearable Devices for Tracking Physical Activity Data

Meredith A. Case, BA1; Holland A. Burwick2; Kevin G. Volpp, MD, PhD3; et al

DAuthor Affiliations | Article Information

JAMA. 2015;313(6):625-626. doi:10.1001/jama.2014.17841

Remote Engagement & Data Collection

Text Messaging and Data Integration

Way To Health (@Penn), other vendors exist

Opportunities to fold in behavioral economics

- Interaction/Competition with others (social support)
- Automated and dynamic notifications (gamification)
- Study logistics reminders, payment, or follow up

Study Results & Lessons

- Remote enrollment
- Digital engagement
- Data integration

FINDINGS

Compared with control, veterans in the gamification with financial incentive group had a significant increase in mean daily step count but those in the gamification without financial incentive group did not

• •

Mean adjusted difference in change in daily step count from baseline vs control:

Gamification with social support: 433 Steps (95% CI, -337 to 1203 steps); P =.81

Loss-framed financial incentives:

1224 Steps (95% CI, 451 to 1996 steps); P = .005

Study #2:

LHS research using prospective, simple text messaging at scale in post-operative patients

Acute Opioid Prescribing and the Opioid Epidemic

2nd most common type of illicit drug use the 'nonmedical' use of prescription opioids e.g. diverted tablets

70% of individuals with OUD

used 'left over' tablets from friends or family

Up to 80% of prescription opioid tablets are unused following surgery

A need to 'Right-Size'

Higher Initial Prescriptions Linked with Family Member Overdose

(Khan, JAMA IM 2019)

Acute Prescriptions Associated with Long Term Use

(Meisel, Annals of EM 2019)

Exposure Measurements Age Group, y	Affected Individuals, No.	Odds Ratio (95% CI)	Lower Odds of Overdose	Greater Odds of Overdose	
Binary					
0-6	177	4.08 (3.07-5.41)		-=-	
7-12	177	4.38 (3.07-6.26)			
13-18	392	3.38 (2.78-4.11)		-	
19-34	121	1.78 (1.33-2.38)		-8-	
35-59	154	2.28 (1.77-2.96)			
≥60	27	1.80 (0.96-3.37)			
0-<50 MME/d					
0-6	157	3.64 (2.72-4.86)			
7-12	171	4.24 (2.96-6.08)			
13-18	375	3.27 (2.68-3.99)		-	
19-34	115	1.71 (1.27-2.31)			
35-59	136	2.02 (1.55-2.64)		-	
≥60	26	1.79 (0.95-3.35)			
50-<90 MME/d					
0-6	2	4.94 (0.80-30.56)	-		
7-12	1	7.22 (0.43-121.97)			
13-18	7	5.37 (1.62-17.83)			
19-34	1	10.10 (0.20-524.32)			
35-59	7	32.39 (3.92-267.78)			The reference group for all catego
≥90 MME/d					is individuals with no opioids
0-6	18	34.22 (9.77-119.85)			dispensed to family members. Th
7-12	5	21.71 (3.97-118.85)			odds ratios of overdose and 95%
13-18	10	8.38 (3.06-22.97)			were not reported for individuals
19-34	5	4.18 (1.16-15.10)			aged 60 years and older in the
35-59	11	56.25 (6.84-462.47)			categories of opioid dispensing to family members of 50 to less that
		0.1		1 10 100 1000	90 morphine milligram equivaler
				Odds Ratio (95% CI)	(MMEs) and 90 or more MMEs p day because of unstable estimat

Policy & Practice

* Note: The map displays the state's primary opioid prescription limit and does not include additional limits on certain providers or in certain settings. Arizona allows prescriptions up to 14 days following surgical procedures and North Carolina allows up to seven days for post-operative relief. Maryland requires the "lowest effective dose." Minnesota's limit is for acute dental or ophthalmic pain. The map also does not reflect limits for minors that exist in at least eight states.

Source: NCSL, StateNet

Perspective Opioid Prescribing Limits for Acute Pain — Striking the Right Balance

Margaret Lowenstein, M.D., M.Phil., David Grande, M.D., M.P.A., and M. Kit Delgado, M.D.

=	Article Metric
Д	5 References 8 Citing Articles 2 Comments
↓ DF	Comments open through August 15, 2018
<	S. LEGISLATORS HAVE RECENTLY UNVEILED NUMEROUS BILLS AIMED AT
C	 combating the opioid epidemic through prevention, harm-reduction, and treatment measures. One of them, the Comprehensive Addiction and Recovery Act (CARA) 2.0,
	was a bipartisan proposal advancing several evidence-based strategies, along with a more

Opportunity:

Gather **patient-reported data** to inform providers and generate procedure, or injury, specific guidelines for acute opioid prescribing

Need for a novel approach

Patient-Reported

Pain Score Ability to Mange Pain Pain Medication Use Non-opioid Analgesia Opioid Consumption

<u>Scalable</u>

Accessible

Cross-cutting

Adaptable

Real-time

Classically Retrospective Phone call or Survey Based Methods Testing the feasibility of gathering acute pain and opioid use through textmessaging.

Approach

Lessons Learned Iterative Text Messaging Development

Non-opioid vs. Opioid

Lesson: No need to 'prime' patients with questions regarding nonopioid use

Clear, Simple & Short

Lesson: Questions should fit text character limits and prompt participants for a simple response (e.g "3" or "yes")

Consent

Lesson: Collaborate early with legal and privacy champions to redesign classically in person processes

Health Information

Lesson: Limit PHI and identifying factors.

Platform Flexibility

Lesson: There is a need for rapid cycle developments and changes to scripts.

Embedded Links

Lesson: Carriers may block or limit links and thus impact data collection.

Learning at scale: Acute Pain and Opioid Use

FDA Sponsored Research

- Multi year project
- Piloted in Orthopedics and Rapidly Scaled
- Post surgical, automated text messaging
- Generate patient-centered data:
 - Pain Intensity
 - Ability to Manage Pain
 - Opioid Use (matched to prescription)
 - **Opioid Disposal**
- Aggregate Clinician Data
 - Department/Division
 - Procedure Level
 - Prescriber Level

(NEJM

Catalyst Innovations in Care Delivery

CASE STUDY

An Automated Text Messaging Program to Inform Postoperative Opioid Prescribing

Anish K. Agarwal, MD, MPH, MS, Zarina S. Ali, MD, MS, Brian Sennett, MD, Ruiying Xiong, MS, Jessica Hemmons, Evan Spencer, Hannah Lacko, MA, Eric Hume, MD, Samir Mehta, MD, M. Kit Delgado, MD, MS

Text-Messaging Data - Patient

Text-Messaging Data - Patient

Scalable & Interdisciplinary Approach

- Continuous process to onboard divisions/departments
- Engagement to date:
 - Opioid Prescribed & texted: 8,763
 - Consented to texting: 54%
 - Filled Opioid Rx: 87%
- Data in Action
 - Identifying patient reported use
 - Informing acute guidelines

Enrollment By Discharge Se	ervice		
Data currently unavailable for many	pre-3/4		
discharges			
Cardiac Surgery	44		
Cardiovascular Medicine	44		
Colorectal Surgery			
Emergency Medicine	61		
Family Medicine	:		
Geriatrics	:		
GI Surgery	239		
Gynecological Onc			
Infectious Diseases	4		
Medicine	8		
Neurology			
Neurosurgery	606		
Oncology	ę		
Orthopedics	523		
Otorhinolaryngology	28		
Plastic Surgery	294		
Podiatry	!		
Pulmonary			
Surgery - General	323		
Surgical Oncology	220		
Thoracic Surgery	89		
Transplant	42		
Trauma Service	256		
Urology	187		
Vascular Surgery	10		

JAMA Network Open.

Original Investigation | Surgery

Patient-Reported Opioid Consumption and Pain Intensity After Common Orthopedic and Urologic Surgical Procedures With Use of an Automated Text Messaging System

Anish K. Agarwal, MD, MPH, MS; Daniel Lee, MD, MS; Zarina Ali, MD, MS; Brian Sennett, MD; Ruiying Xiong, MS; Jessica Hemmons, MS; Evan Spencer, BS; Dina Abdel-Rahman, BS; Rachel Kleinman, MHSA; Hannah Lacko, MA; Annamarie Horan, PhD, MPA; Mary Dooley, PhD; Eric Hume, MD; Samir Mehta, MD; M. Kit Delgado, MD, MS

Pitfalls

Additional "Work"

Attempting to enroll participants within clinical environments

Complexity in Branching

Introduce friction and lead to fatigue and lower response rates

Embedded Links/Surveys

Can be screened out or never accessed

Privacy and Security

Focus on this up front with key stakeholders

Nudges vs. Overbearing

Balance a gentle reminder and being over bearing

Siloed Research/Efforts

Situational awareness with other trials or programs

Pearls

Keep it Simple

Straightforward and conversational tone

Timing Matters

Think about when to send messages, short and brief reminders as follow up

Offload Where Possible

Integration can be helpful to offload participants/clinicians

Opt-out

Allow participants to opt-out up front and provide additional study information

It's a Hammer

Digital methods are a tool that can facilitate research but often must work with other strategies (e.g. behavioral economics)

Pilot Test Early & Often

Fail fast and be ready to pivot in planning

Future Opportunities

Annals of Internal Medicine

ORIGINAL RESEARCH

Comparative Effectiveness of an Automated Text Messaging Service for Monitoring COVID-19 at Home

M. Kit Delgado, MD, MS; Anna U. Morgan, MD, MSc, MSHP; David A. Asch, MD, MBA; Ruiying Xiong, MS; Austin S. Kilaru, MD, MSHP; Kathleen C. Lee, MD; David Do, MD; Ari B. Friedman, MD, PhD; Zachary F. Meisel, MD, MPH, MSHP; Christopher K. Snider, PMPI; Doreen Lam, BA; Andrew Parambath, BA; Christian Wood, BA; Chidinma M. Wilson, BA, BS; Michael Perez, BS, BA; Deena L. Chisholm, MPH; Sheila Kelly, MPH; Christina J. O'Malley, MHA; Nancy Mannion, DNP, RN, CEN; Ann Marie Huffenberger, DBA, RN, NEA-BC; Susan McGinley, CRNP; Mohan Balachandran, MA, MS; Neda Khan, BS; Nandita Mitra, PhD; and Krisda H. Chaiyachati, MD, MPH, MSHP

Background: Although most patients with SARS-CoV-2 infection can be safely managed at home, the need for hospitalization can arise suddenly.

Objective: To determine whether enrollment in an automated remote monitoring service for community-dwelling adults with COVID-19 at home ("COVID Watch") was associated with improved mortality.

Design: Retrospective cohort analysis.

Setting: Mid-Atlantic academic health system in the United States.

Participants: Outpatients who tested positive for SARS-CoV-2 between 23 March and 30 November 2020.

Intervention: The COVID Watch service consists of twicedaily, automated text message check-ins with an option to report worsening symptoms at any time. All escalations were managed 24 hours a day, 7 days a week by dedicated telemedicine clinicians.

Measurements: Thirty- and 60-day outcomes of patients enrolled in COVID Watch were compared with those of patients who were eligible to enroll but received usual care. The primary outcome was death at 30 days. Secondary outcomes included emergency department (ED) visits and hospitalizations. Treatment effects were estimated with propensity score-weighted risk adjustment models.

Results: A total of 3488 patients enrolled in COVID Watch and 4377 usual care control participants were compared with propensity score weighted models. At 30 days, COVID Watch patients had an odds ratio for death of 0.32 (95% C), 0.12 to 0.72), with 1.8 fewer deaths per 1000 patients (Cl, 0.5 to 3.1) (P = 0.005); at 60 days, the difference was 2.5 fewer deaths per 1000 patients (Cl, 0.9 to 4.0) (P = 0.002). Patients in COVID Watch had more telemedicine encounters, ED visits, and hospitalizations and presented to the ED sconer (mean, 1.9 days sconer [Cl, 0.9 to 2.9 days] all P < 0.001.

Limitation: Observational study with the potential for unobserved confounding.

Conclusion: Enrollment of outpatients with COVID-19 in an automated remote monitoring service was associated with reduced mortality, potentially explained by more frequent telemedicine encounters and more frequent and earlier presentation to the ED.

Primary Funding Source: Patient-Centered Outcomes Research Institute.

Ann Intern Med. doi:10.7326/M21-2019 Annals.org For author, article, and disclosure information, see end of text. This article was published at Annals.org on 16 November 2021. 😚 JMIR mHealth and uHealth

Journal Information - Browse Journal - Subn

Published on 4.8.2020 in Vol 8, No 8 (2020): August

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/17281, first published December 02, 2019.

Ψ

Prescribing Behavior Change: Opportunities and Challenges for Clinicians to Embrace Digital and Mobile Health

Anish Agarwal 1, 2, 3, 4 (0); Mitesh Patel 1, 3, 4, 5, 6 (0)

Thank You

Questions, Thoughts, or Comments?

Anish.Agarwal@pennmedicine.upenn.edu

@agarwalEM

