Presentation goals

- Describe PCORnet experience to date
 - Within and across network linkages
- Outline a global PCORnet-wide approach
 - Full network linkage
- Present some potential extensions
 - Beyond current PCORnet partners
Presentation outline

- PCORnet 2.0
- Introduction to hashed linkage
- PCORnet linkage
 - Within
 - Across
 - Full
 - Beyond
- Technology, governance, and use cases
Snapshot of PCORnet 2.0

9 Clinical Research Networks (CRNs)
- 47 DataMarts
- >65M patients with an encounter in the past 5 years
- >30M patients with an encounter in the past year

2 Health Plan Research Networks (HPRNs)
- 2 DataMarts
- >40M patients with an encounter in the past 5 years
- >20M patients with an encounter in the past year

The patient overlap between CRNs and HPRNs is unknown but expected to be high.

The patient overlap between CRN DataMarts is unknown but expected to be low in most cases (except select markets).
Introduction to hashed linkage: Terminology

- **Deterministic linkage** – two records match if all / some identifiers match above a specific threshold

- **Probabilistic linkage** – weights are assigned to each identifier & used to calculate probability that two records match

- **Privacy-preserving record linkage (PPRL)** – allows linkage across databases while preserving privacy of entities in them. Can be deterministic or probabilistic.

- **Trusted third party / honest broker** – a neutral third party that performs sensitive activities within a PPRL linkage method. Can also be achieved with technology.

- **Hashing algorithm / hash function** – used to convert an input string into an alpha-numeric string of fixed length (the hash). Two different strings should not generate the same hash.

- **Salt** – data appended to input of a hash function as protection against attack (e.g., storing passwords). In general, a random salt is used for every record. When linking, the same salt needs to be used across all databases.
Introduction to hashed linkage: General approach

Populate Personal Health Information (PHI) → Pre-process → Execute hashing algorithm → Generate hash(es) for each patient

Distribute input parameters (e.g., keys, salts, seeds) → Send to trusted third-party / Honest Broker

Identify matching patients
Introduction to hashed linkage: General approach

Populate Personal Health Information (PHI) → Pre-process → Execute hashing algorithm → Generate hash(es) for each patient

Distribute input parameters (e.g., keys, salts, seeds)

Send to trusted third-party / Honest Broker

Identify matching patients
Introduction to hashed linkage: Example uses

- Link claims & EHR
 - Non-PCORnet example: All of Us

- Link claims & claims
 - Western Australia & New South Wales

- Identify overlap in rare-disease registries
 - Rare Diseases Registry Program (RaDaR) Global Unique Identifier (GUID) – utilizes National Database of Autism Research GUID program

- Master Patient Index / Health Information Exchange
Within Network Linkage
Survey of within network approaches

<table>
<thead>
<tr>
<th>Network</th>
<th>Method</th>
<th>Type</th>
<th>Proprietary</th>
<th>Hashing</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPriCORN</td>
<td>GPID</td>
<td>Weighted deterministic</td>
<td>Licensed</td>
<td>Yes</td>
</tr>
<tr>
<td>INSIGHT</td>
<td>GPID</td>
<td>Deterministic and probabilistic</td>
<td>Licensed</td>
<td>No</td>
</tr>
<tr>
<td>MidSouth</td>
<td>PPRL</td>
<td>Deterministic</td>
<td>Open source</td>
<td>Yes</td>
</tr>
<tr>
<td>OneFlorida</td>
<td>De-Duper</td>
<td>Deterministic</td>
<td>Open source</td>
<td>Yes</td>
</tr>
<tr>
<td>PEDSnet</td>
<td>CURL</td>
<td>Deterministic, probabilistic, or both</td>
<td>Licensed</td>
<td>Yes</td>
</tr>
<tr>
<td>pSCANNER</td>
<td>Garbled circuit</td>
<td>Deterministic</td>
<td>Open source</td>
<td>No</td>
</tr>
<tr>
<td>REACHnet</td>
<td>GPID</td>
<td>Deterministic</td>
<td>Licensed</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: Some methods support multiple types/approaches, which CRNs listed in their response.
Within network example: REACHnet technology

Source/Data Partner A

Secure Agent

[Diagram showing data flow and hash generation]

Fourth Party

Hash Matching Algorithm

Hash Bundle Honest Broker

Matching Engine

Source/Data Partner B

Secure Agent

[Diagram showing data flow and hash generation]

HDL/Third Party

SALT Generator

PCI e-Health

pcornet
Within network example: REACHnet governance

- **Site-level Common Data Model IRB**
 - Governs systems sending hashes periodically with CDM elements to REACHnet Coordinating Center.

- **Network-level Master Reliance Agreement (MRA)**
 - Governs sharing of hashes for study specific use cases (under their own regulatory agreements).

- **Network-level master payer data sharing and use agreement (DSUA)**
 - Governs global hashing/matching to support specific research use cases (nested as amendments).
Within network example: Health plan linkage

1a. Execution of REACHnet Master Payer DSUA

3. REACHnet applies algorithm to identify applicable CDS patient GPIDs

4. REACHnet utilizes crosstable to identify PATIDs associated with GPIDs

5. REACHnet sends PATIDs, required data elements, and metadata requests to CDS

6. CDS utilizes PATID to determine which patients have applicable data

7. CDS transmits PATID, data elements, and metadata to REACHnet

8. Data is normalized

9. REACHnet utilizes PATID/GPID crosstable to link data to corresponding REACHnet patient record

1b. All data hashed and matched to populate PATID/GPID crosstable

2. Research Preparation

REACHnet
Within network example: Medicare linkage

Requirements
1. Evidence of Funding Letter
2. IRB Common Rule and HIPAA Waiver Approvals
3. Part D Attestation
4. Research Methods
5. Research Identifiable File Cost Estimate/Invoice
6. Research Identifiable File Data Use Agreement
7. Research Identifiable File Executive Summary (including site-specific Data Management Plans)
8. Research Identifiable File Request Letter for New Study
9. Research Identifiable File Specifications Worksheet
10. Research Identifiable File Study Protocol
11. Submission of beneficiary finder files with the following data elements (as available): 1) Beneficiary IDs; 2) Health Insurance Claim Numbers; 3) SSNs; 4) Resident ID/State Code; 5) Unique Physician Identification Numbers; 6) National Provider Identifiers; 7) Employer Identification Number/Tax Identification Number.
Within network example: REACHnet use cases

- **GPID validation (clinical-to-clinical and clinical-to-claims)**
 - *Current and Potential Effects of Cancer Screening on Health Outcomes*

- **Clinical-to-clinical linkages**
 - *Real-world treatment patterns and outcomes of patients with T2DM*
 - *Real-world disease burden and treatment outcomes of patients with hyperkalemia*
 - *Louisiana Experiment Assessing Diabetes Outcomes*

- **Clinical-to-claims linkages**
 - *T2DM Rapid Cycle Research Project (Tulane & BCBS)*
 - *PCORnet Antibiotics Study (Ochsner, Tulane & Humana)*

- **Clinical-to-Tumor Registry**
 - *Investigating Social Determinants of Breast Cancer Disparities Using Cancer Registry and EHR Data*
 - *Social Determinants Role in Explaining Disparities in Hepatocellular Carcinoma*
Research example: Cancer RCR

Aim 3. Completeness and Outcomes
- In a cohort of patients with first single breast cancer diagnosed during 2011-2015 with linked Medicare claims, assess the completeness of the EHR-derived data for identifying targeted therapy and molecular tests.
Research example: Cancer RCR technology

Limited data set from individual sites: de-identified EMR, date offsets, RandomID

Role A – Data Provider

Role C – Data analysis

Role B – Data Integration

KUMC Data Center

NewWave – GDIT

Generate Crosswalk

BENE_ID RandomID SiteID
27GW5B 9875654 78764

BENE_ID CMS File
27GW5B Data Match
No match Data outside HS

Study Team

De-identified I2B2 CMS + EMR

De-identification with random date offsets

Integrated I2B2 CMS + EMR

Merge and Assign new random patient ids

Record Linkage by RandomID

Slides courtesy of Mary Schroeder (Ulowa), Russ Waitman (KUMC), Betsy Chrischilles (Ulowa) and the RCR Project Team
Research example: Cancer RCR governance

- Executive Summary: Describes the project and initial team members
- Study Protocol: Describes the specific analyses and types of data required to support those analyses
- Data Use Agreement: Stipulates data elements, linkage, and use
- Data Management Plan: Describes environment to conduct this research
- Supplemental Data Security Analysis: Helps move the project forward with CMS and sites

Slides courtesy of Mary Schroeder (Ulowa), Russ Waitman (KUMC), Betsy Chrischilles (Ulowa) and the RCR Project Team
Across Network Linkage
Antibiotics demonstration study: Overview

- **Purpose** – determine the associations of antibiotic use with weight outcomes in a large national cohort of children

- **Quantitative aims** – assess the association between antibiotic (ABX) use before age 2 and childhood weight outcomes:
 - Weight outcomes at age 5 & 10
 - Childhood weight trajectories
 - Variation according to maternal variables (subset)

- **Qualitative aim** – parent focus groups & provider interviews on association between ABX & childhood obesity

- **Published findings (Aim 1)** – ABX use at <24 months associated with slightly higher body weight at 5 years of age

CDRN – Health Plan Linkage for ABX Study

Primary aim - Better capture of antibiotic exposure data before 24 months of age

Secondary aims
- Develop technical process for linkage
- Assess information gain
- Extend prescribing – dispensing comparison
- Potential added data on comorbidities

Linkage partners
- PEDSnet/HealthCore
- REACHnet/Humana
Across network example: PEDSnet/HealthCore technology

- CURL (Colorado University Record Linkage) – developed by Toan Ong

- Supports distributed & centralized linkage – centralized for this project

- Publications on method forthcoming

http://www.ucdenver.edu/academics/colleges/medicalschool/programs/d2V/tools/Pages/CURL.aspx
Across network example: PEDSnet/HealthCore governance

Data Use Agreements
- PEDSnet members signed PEDSnet & PCORnet DUAs
 - PEDSnet – sharing between PEDSnet
 - PCORnet – sharing with PCORnet CC
- HealthCore signed PEDSnet DUA & study-specific DUA with PCORnet CC

IRB – PEDSnet (CHOP as central IRB)
- ABX study determined to be non-human subjects research (NHSR)
- Use of linkage algorithm – NHSR
- Linkage with HealthCore – NHSR

IRB – HealthCore
- Had to submit local IRB – BAA with Anthem requires IRB approval with HIPAA waiver & DUA to release data

Editorial comment – NHSR determination may have actually slowed process

Thanks to Kevin Haynes from HealthCore for help on details
Within / across network summary

Networks selected the technology & governance they felt was most appropriate given their local context.

Achieved local success, but lack of standardization has made it difficult to scale or rapidly execute new projects.
- If a health plan is linking with 5 networks, are they really expected to implement 5 methods?
- Inconsistent governance means each new linkage discussion essentially starts from scratch.

Recognition that a network-wide approach to linkage is needed.
- Networks can continue to utilize their local methods.
- Similar approach towards standardization as with the PCORnet Common Data Model and query tools.
Full Network Linkage
Purposes

- Build distributed network linkage infrastructure (technology and governance)
 - For observational and population health surveillance research
 - Global agreement for the infrastructure
 - Scores of research use cases
- Classify the network
 - Overlap analysis
 - Number of unique patients
 - Table 1
- Support demonstration projects and RCRs
 - Antibiotics study
 - Opioid RCR
 - Scores of future use cases
- Develop the business model
 - Strong comparative advantage
 - Better, faster, cheaper technology and governance to link for specific projects
 - Scalable to other data sources
Governance

Global Linkage Workgroup
- Representatives from
 - Each CRN and HPRN
 - PCORI, Coordinating Center, PCRF

CDM expansion
- Hash table

IRB
- Global agreement for the infrastructure
 - Update CDM IRB (one per network)
- Scores of research use cases
 - Individual study IRBs (one per study)

DSUA
- CDM expansion and study-specific use cases governed by current PCORnet DSUA v2.0 (so long as study results returned to Coordinating Center)
Technology

Landscape analyses to inform

- Technology
 - Most important attributes/metrics
 - Validation (formal validations)
 - Efficiency (time to implement)
 - Identifiers for linkage
 - Technical requirements for linkage (software requirements)
 - Proof of concept (real world implementation, peer review)

- Governance
 - Agreements, partners, use cases

Methodology

- Develop RFP for hashing/matching solutions
 - Attribute list
 - RFP
 - Review process

- Expect identified solution to provide salts/hashes and support network implementation

Queries

- Develop a query that can be executed through PopMedNet by PCORnet Coordinating Center

- Allow for linkage and de-duplication and replaces hashes with random patient IDs post-linkage
Beyond Network Linkage
Benefits of a scalable infrastructure

Reusable infrastructure
- Global approach supporting scores of research use cases

Better, faster, cheaper linkage
- Easy to add partners, data sources

Business model
- Uniqueness of the asset
Potential extensions

- Registries
 - E.g. Louisiana Tumor Registry

- Commercial claims
 - E.g. Sentinel partners

- Medicare claims
 - E.g. ResDAC

- Patient reported outcomes
 - E.g. Patient Powered Research Networks
Questions / Discussion