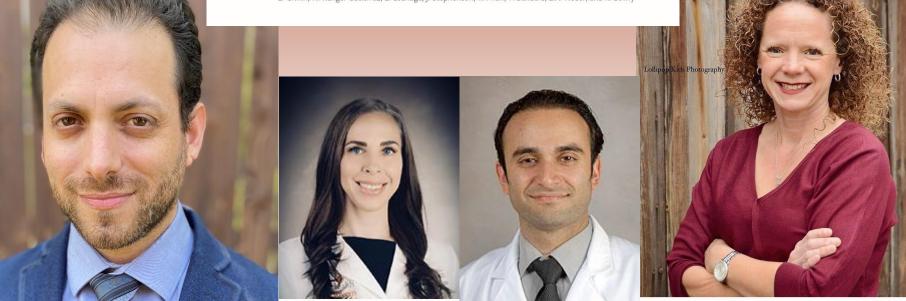
<u>Be</u>nefits c Co

James Grotta

The NEW ENGLAND JOURNAL of MEDICINE


ESTABLISHED IN 1812 SEPTEMBER 9, 2021 VOL. 385 NO. 11

Prospective, Multicenter, Controlled Trial of Mobile Stroke Units

J.C. Grotta, J.-M. Yamal, S.A. Parker, S.S. Rajan, N.R. Gonzales, W.J. Jones, A.W. Alexandrov, B.B. Navi, M. Nour, I. Spokoyny, J. Mackey, D. Persse, A.P. Jacob, M. Wang, N. Singh, A.V. Alexandrov, M.E. Fink, J.L. Saver, J. English, N. Barazangi, P.L. Bratina, M. Gonzalez, B.D. Schimpf, K. Ackerson, C. Sherman, M. Lerario, S. Mir, J. Im, J.Z. Willey, D. Chiu, M. Eisshofer, J. Miller, D. Ornelas, J.P. Rhudy, K.M. Brown, B.M. Villareal, M. Gausche-Hill, N. Bosson, G. Gilbert, S.Q. Collins, K. Silnes, J. Volpi, V. Misra, J. McCarthy, T. Flanagan, C.P.V. Rao, J.S. Kass, L. Griffin, N. Rangel-Gutierrez, E. Lechuga, J. Stephenson, K. Phan, Y. Sanders, E.A. Noser, and R. Bowry

troke <u>U</u>nit nt:

RN, MHA

Alex Czap MD, Ritvij Bowry MD

Disclosures

- Funding: PCORI, AHA
- Genentech donated Activase
- Consultant for Frazer Ltd (Grotta, Parker)

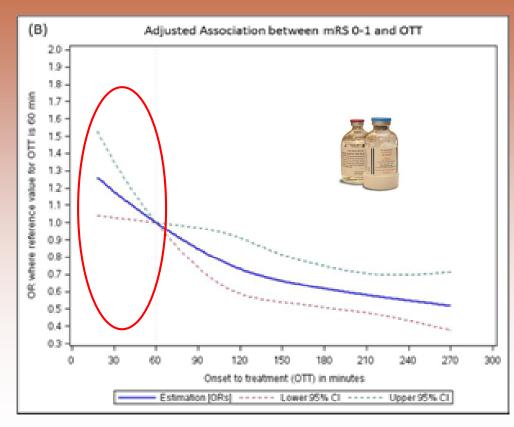
Houston 2014 <u>Ritvij Bowry, Suja Rajan, Nicole Gonzales, Mengxi Wang,</u> David Persse, Asha Jacob, Michael Gonzales, Noopur Singh

Memphis 2017 <u>Anne and Andrei Alexandrov</u> <u>Jim Rhudy</u>

New York 2018 <u>Matt Fink, Babak Navi</u> Carla Sherman, Josh Willey

Colorado (Aurora and Colo Spgs) 2017 William Jones, Brandi Schimpf, Kim Ackerson

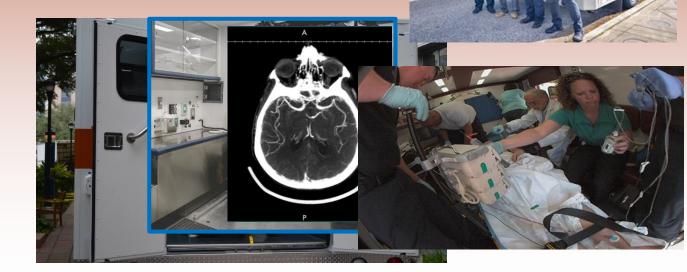
LA-UCLA 2018 <u>May Nour, Jeff Saver</u> <u>Kevin Brown, Bryan Villareal</u>



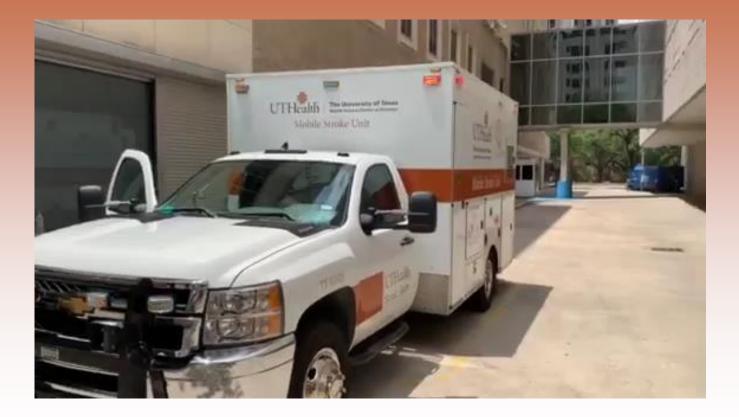
Sutter-Peninsula 2019 Ilana Spokoyny, Joey English Jenny Im, Nobl Barazangi

Indianapolis 2019 Jason Mackey, Sarah Collins, Kelly Silnes

The most potent way to improve tPA outcomes is to give it faster--Especially in the first "golden hour" after onset


The only way to accomplish this.... Is to bring the treatment to the patient

Kim et al, GWTG, Circulation 11/4/16


Houston Mobile Stroke Unit— First in U.S. 2014

- Standard 12 foot ambulance
- ✓ Portable CT scanner
- Point-of-care laboratory
- Tele-radiology & neurology
- ✓ VN, RN, CT tech, Medic

A Tour of the Houston Mobile Stroke Unit

The on board MD can be replaced by a TM MD

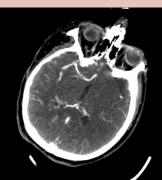
Satisfactory connectivity 169/173 (98%) of MSU consults

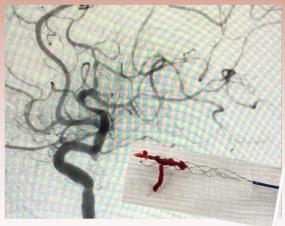
Agreement between On-Board and TM VN 88% (Kappa = 0.73) (compared with in-person agreement in ED of 88%)

MSU Arrival to	Physician	N	Mean	SD
tPA Decision (minutes)	OB	163	18.9	7.7
(minutes)	TM	39	21.2	7.6
MSU Arrival to tPA Bolus	OB	110	24.1	6.3
(minutes)	TM	26	23.6	6.4

Wu et al. Stroke 2017; 48:493-97, Ramadan et al. Stroke. 2017; 48:222-24

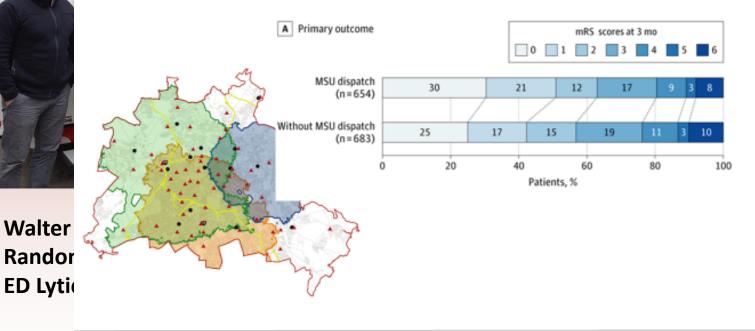
The MSU Facilitates the Entire Stroke Treatment Pathway


65 yo M Onset 10:35 pm Rendezvous 11:12 (37 min) NIHSS 24


tPA (MSU) 11:22 (<u>47 min from onset</u>) CTA (MSU) 11:27

Call to ET team

ED door 11:46 GP 11:56 (**DTGP 10 min**) Recan 12:26 (111 min)


24 hr NIHSS 3

JAMA Network⁻⁻

From: Association Between Dispatch of Mobile Stroke Units and Functional Outcomes Among Patients With Acute Ischemic Stroke in Berlin

JAMA. 2021;325(5):454-466. doi:10.1001/jama.2020.26345

2014 ated with tPA of onset dard

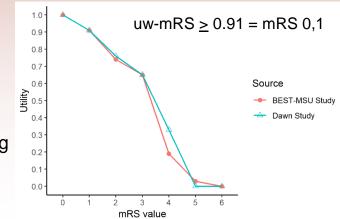
Copyright 2021 American Medical Association. All Rights Reserved.

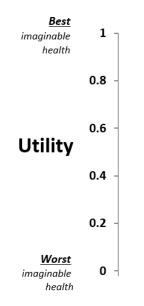
BEST-MSU Study

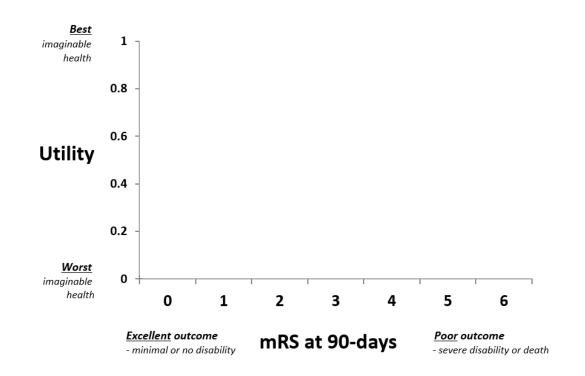
Hypothesis:

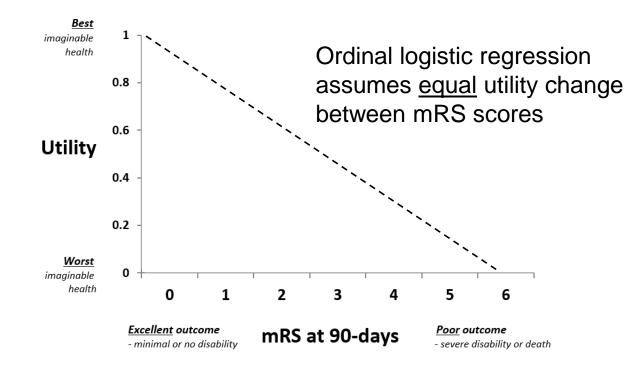
- Compared with Standard Management (SM) by EMS......MSU management will....
 - SA-1: reduce disability measured 90 days after stroke,
 - SA-2: reduce health care resource utilization over the subsequent year

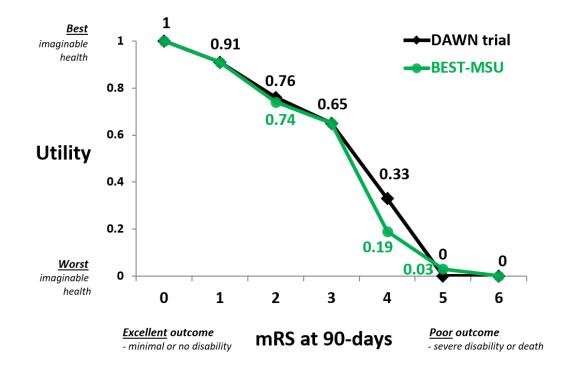
Design


Phase III alternating week (MSU or SM) cluster-controlled


Inclusion Criteria


Primary analysis population - all tPA eligible patients (mITT)


Outcome


 Primary - Utility-weighted mRS (uw-mRS) at 3 mo 0.07 difference (initially was 0.09) Sample size 1038 (blindly increased based on results from Phantom-S study showing 0.07 difference)

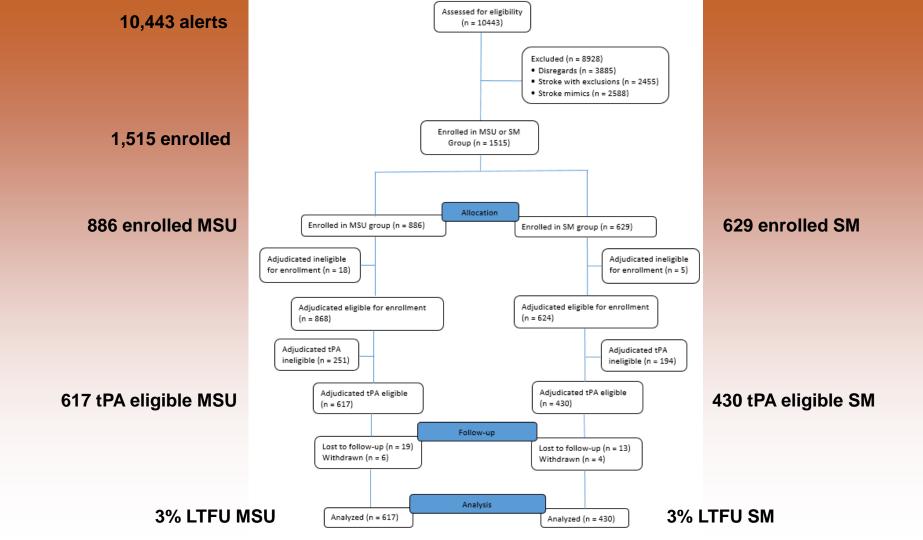
BEST-MSU Study Process- avoiding bias

1. MSU / SM alternating weeks MSU weeks

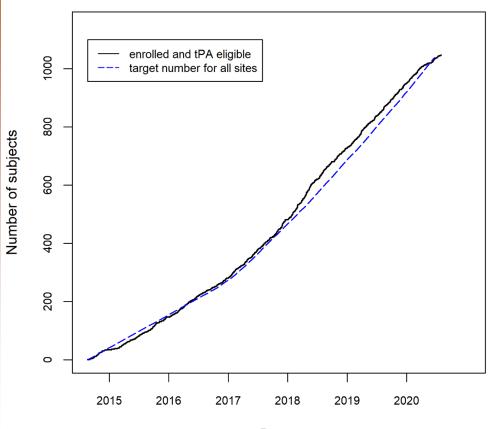
SM weeks

MSU team dispatched without MSU to ensure comparable pts.

- 2. Blinded Adjudication of tPA eligibility (primary analysis population)
- 3. Blinded assessment of 90d mRS using standardized tool (RFA)


Rendezvous: allows one MSU to cover 75% of an entire city of 2.5 M Parker et al 2019

- Direct 911 dispatch-- median <u>7 miles</u> from MSU base
- Rendezvous-- their strokes occurred median <u>13 miles</u> from base



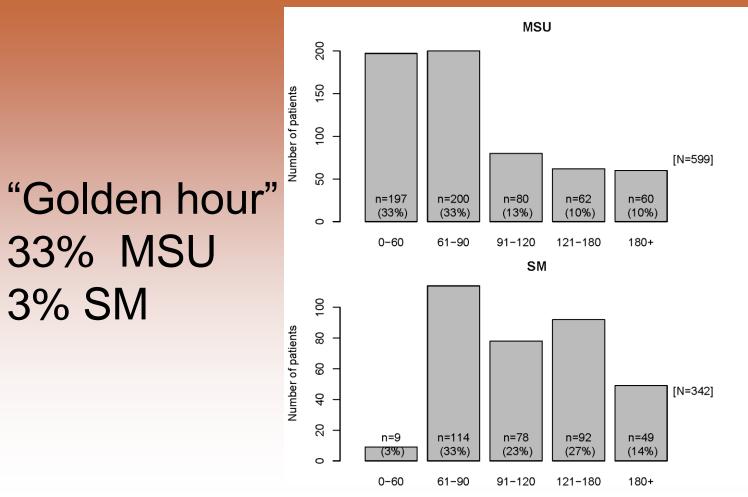
Time (min) from 911 alert to tPA bolus
 37 ± 10 with on-scene
 38 ± 13 with rendezvous (p=0.89)

Enrollment and expected enrollment of tPA-eligible patients at all sites

Final pt #1047 enrolled 7/31/20

	6		
	SM (n=430)	MSU (n= 617)	
Age in years, median [IOR]	65.00 [55.00, 78.00]		
Baseline NIHSS, median [IQR]	9.00 [6.00, 16.00]	9.00 [5.00, 16.00]	
Baseline NIHSS, n (%)			
0-5	102 (23.7)	159 (25.8)	
6-12	174 (40.5)	252 (40.8)	
≥13	154 (35.8)	206 (33.4)	
Gender			
Female, n (%)	206 (47.9)	324 (52.5)	
Male, n (%)	224 (52.1)	293 (47.5)	
Ethnicity			
Hispanic or Latino, n (%)	80 (18.6)	97 (15.7)	
Race			
Asian, n (%)	20 (4.7)	24 (3.9)	
Black or African-American, n	172 (40.0)	241 (39.1)	
(%)			
White, n (%)	224 (52.1)	338 (54.8)	
Pre-Stroke modified Rankin Scale			
0, n (%)	288 (67.0)	379 (61.4)	
1, n (%)	47 (10.9)	79 (12.8)	
2, n (%)	21 (4.9)	57 (9.2)	
3, n (%)	58 (13.5)	74 (12.0)	
4, n (%)	16 (3.7)	27 (4.4)	
5, n (%)	0 (0.0)	1 (0.2)	
Site			
Houston, n (%)	333 (77.4)	474 (76.8)	
Colorado, n (%)	31 (7.2)	69 (11.2)	
Memphis, n (%)	24 (5.6)	30 (4.9)	
New York City, n (%)	11 (2.6)	17 (2.8)	
Los Angeles, n (%)	17 (4.0)	6 (1.0)	
Burlingame, n (%)	9 (2.1)	13 (2.1)	
Indianapolis, n (%)	5 (1.2)	8 (1.3)	

Baseline Characteristics of tPA Eligible Patients

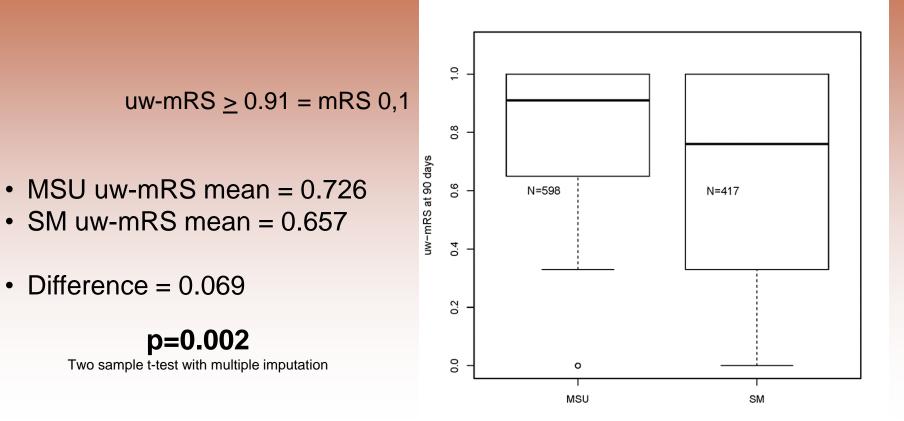

Final Diagnosis of tPA Eligible Patients

N (%)	MSU	SM
	(N=617)	(N=430)
Definite stroke	420 (68.1)	311 (72.3)
Probable stroke	31 (5.0)	2 3 (5.3)
Stroke reversed by tPA	(104 (16.9))	(38 (8.8))
TIA	5 (0.8)	17 (4.0)
Stroke mimic	(56 (9.1))	(41 (9.5)
Missing	1 (0.2)	0 (0.0)

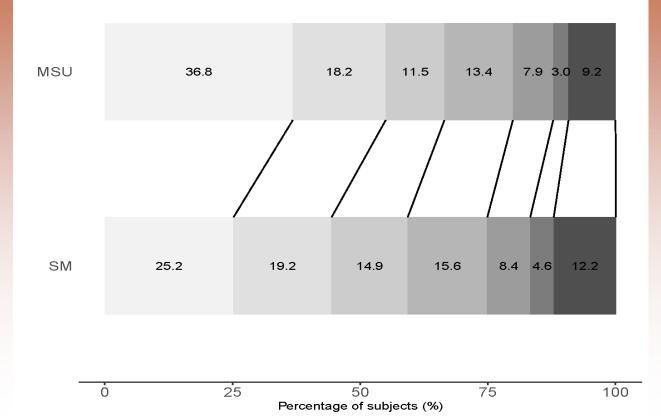
Time Metrics (min) in tPA Eligible Patients

	MSU	SM	Р
	Median [IQR]	Median [IQR]	
LKN to tPA treatment	72 [55-105]	108 [84-147]	< 0.001
EMS alert to tPA treatment	46 [39-55]	78 [66-93]	< 0.001
ED door to needle		40 [30-51]	
LKN to EMS alert	23 [8-52]	22 [11-60]	0.30
EMS alert to EMS arrival	9 [6-13]	9 [6-13]	0.17
EMS arrival to ED arrival	55 [47-62]	27 [21-33]	< 0.001
LKN to endovascular therapy	166 [131-202]	163 [134-209]	0.76
EMS alert to endovascular therapy	141 [116-171]	132 [114-160]	0.33
ED door to endovascular therapy	76 [53-105]	94 [72-124]	< 0.001

Time from LKN to tPA bolus



Percent of tPA Eligible Patients Treated With tPA in Each Group

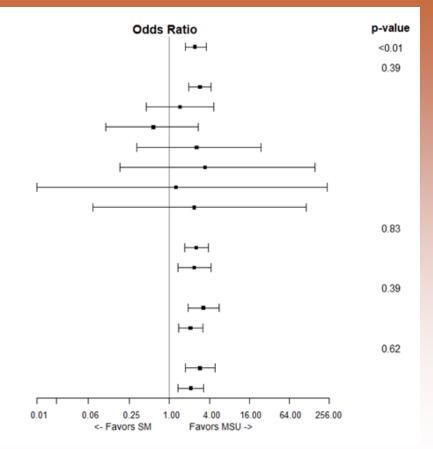

	>4.5h	≤4.5h	No treatment	Total
	n (%)	n (%)	n (%)	n
SM	2 (0.5)	340 (79.1)	88 (20.5)	430
MSU	0 (0.0)	599 (97.1)	18 (2.9)	617

chi-square test (p<0.001)

Primary Outcome Distribution of uw-mRS in MSU vs SM groups

90d mRS 0 1 2 3 4 5 6

Logistic regression for mRS 0,1 OR 2.43 P <0.001

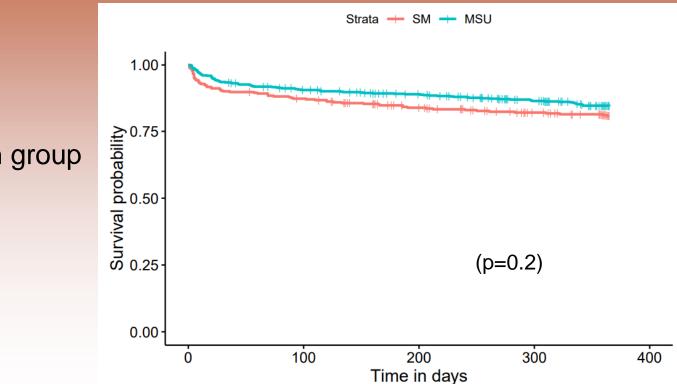

Logistic regression propensity score for mRS 0,1 OR 2.43 P < 0.001

Perspective

- 0.07 difference in uw-mRS
 - c/w 0.09 difference between tPA and placebo in 0-3 hr NINDS
 - c/w 0.03 difference between tPA and placebo in 3-4.5 hr ECASS-3
 - Corroborates Berlin MSU data
- For every 100 patients treated with an MSU rather than SM,
 - 27 will have less final disability,
 - 11 more will be disability-free (mRS 0,1)

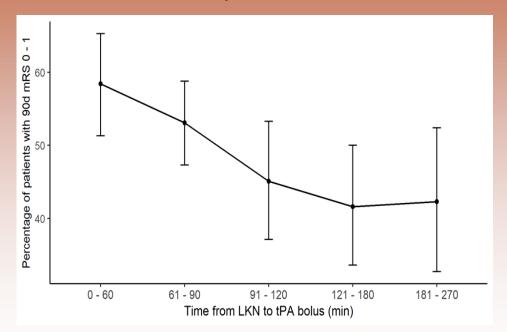
Pre-Specified Subgroups—no significant interaction

Subgroups	mRS 0-1 (MSU), n (%)	mRS 0-1 (SM), n (%)	
Overall	329 (53.3)	185 (43.0)	
Sites			
Houston	261 (55.1)	145 (43.5)	
Colorado	36 (52.2)	18 (58.1)	
Memphis	10 (33.3)	11 (45.8)	
New York city	10 (58.5)	4 (36.4)	
Los Angeles	2 (33.3)	5 (29.4)	
Burlingame	6 (46.2)	1 (11.1)	
Indianapolis	4 (50.0)	1 (20.0)	
LSN to EMS/MSU arrival			
<= 1hr	221 (56.4)	134 (44.8)	
>1 hr	108 (48.0)	51 (38.9)	
Race			
Black	128 (53.1)	62 (36.0)	
Non-Black	201 (53.5)	123 (47.7)	
Gender			
Female	90 (43.7)	95 (42.4)	
Male	174 (53.7)	155 (52.9)	


What about other groups (post-hoc).....?

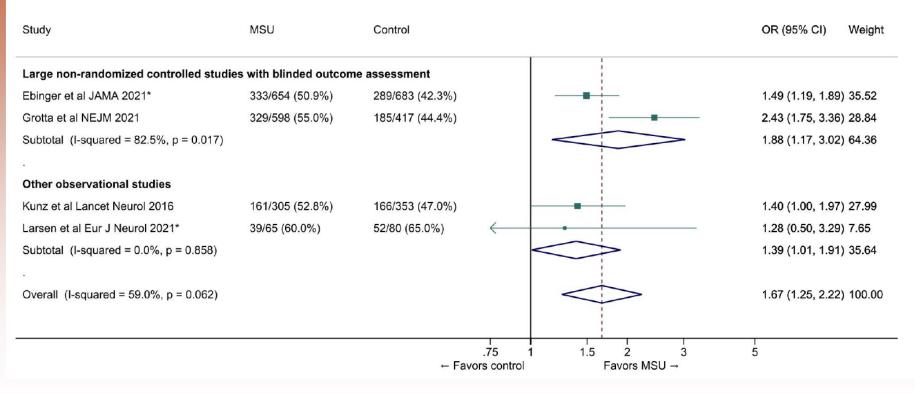
- All definite (imaging positive) tPA-eligible ischemic strokes, excluding strokes "reversed" by tPA
 OR=2.46, P<0.001
- All transported (including ICH and mimics)
 - OR 1.82; P<0.001)
- All transported <u>excluding</u> tPA-eligible or tPA-treated patients
 - NS

Therefore, positive results driven by improved outcomes in tPA treated patients, and their benefit is great enough to produce overall MSU benefit even if mimics, TIAs and ICH patients are transported


Mortality in all tPA treated pts

2% sICH in each group

Positive Results Driven by "Golden Hour" Patients


Time from LKN to tPA bolus vs Percentage with 90d mRS 0-1 MSU + SM patients combined

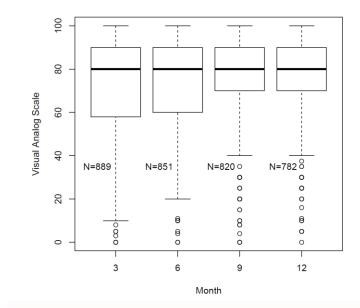
Correlation between time and 90d ordinal mRS (Spearman correlation coefficient 0.15, P<0.001) Correlation between 1hr treatment and 90d mRS 0-1 (Fisher's exact test P=0.007).

Metanalysis (submitted for publication)

Figure 2: Pooled adjusted odds ratio for excellent outcome at 90 days (mRS 0-1) in patients with MSU deployment vs. usual care (random-effects meta-analysis).

SA-2: Health care utilization up to 1 year post stroke

Table 37: Utilizations in time interval for all enrolled tPA-eligible (blinded review) patients


Utilization	0-3 (N=971)	4-6 (N=883)	7-9 (N=847)	10-12 (N=805)
Hospitalization				
- Yes, n (%)	225(23.17)	132(14.95)	110(12.99)	95 (11.8)
- No, n (%)	744(76.62)	744 (84.26)	735 (86.78)	706 (87.7)
- Missing, n (%)	2(0.21)	7(0.79)	2(0.24)	4(0.5)
Long-term care stay				
- Yes, n (%)	25(2.57)	2(0.23)	6(0.71)	0 (0)
- No, n (%)	944 (97.22)	874 (98.98)	839 (99.06)	801 (99.5)
- Missing, n (%)	2(0.21)	7(0.79)	2(0.24)	4(0.5)
Skilled nursing facility stay				
- Yes, n (%)	139(14.32)	17(1.93)	9(1.06)	9(1.12)
- No, n (%)	$830 \ (85.48)$	859 (97.28)	$835 \ (98.58)$	791 (98.26)
- Missing, n (%)	2(0.21)	7(0.79)	3(0.35)	5(0.62)
Intermediate care NH stay				
- Yes, n (%)	29(2.99)		9(1.06)	
- No, n (%)	940 (96.81)	857 (97.06)	$835 \ (98.58)$	792 (98.39)
- Missing, n (%)	2(0.21)	7(0.79)	3(0.35)	5(0.62)
Hospice utilization				
- Yes, n (%)	40(4.12)	1(0.11)	1(0.12)	3(0.37)
- No, n (%)	929 (95.67)	875 (99.09)	844 (99.65)	798 (99.13)
- Missing, n (%)	2(0.21)	7(0.79)	2(0.24)	4(0.5)
Emergency room visit				
- Yes, n (%)	137(14.11)	94~(10.65)	82(9.68)	74(9.19)
- No, n (%)	832 (85.68)	781 (88.45)	762 (89.96)	727 (90.31)
- Missing, n (%)	2(0.21)	8(0.91)	3(0.35)	4 (0.5)

SA-2: EQ5D up to 1 year post stroke

Figure 7: Mobility Problems (all enrolled tPA-eligible (blinded review) MSU and SM patients combined

Figure 12: Distribution of Visual Analog Scale scores (all enrolled tPA-eligible (blinded review) MSU and SM patients combined)

Month

Berlin Cost-utility (preliminary, unpublished)

3 MSU in operation + 1 back-up	MSU care €/ y	
Investment (writing-off)	631,259	
Maintenance	676,020	
EMS staffing (including administration etc.)	660.347	
Hospital staff (physicians and technicians) + teleradiology + medical quality management	1,931,666	
Medication and medical equipment	352.134	
Savings of hospital costs	-414.685	
Savings by avoidance of additional EMS dispatches (emergency physicians, helicopters)	-382.039	
Savings by reduced long-term care	-295,204	
Total costs for 3 MSU stroke care / y	3.160.246	

With 75 quality adjusted life years (QALY) saved per year:

Adjusted incremental costs per QALY: €41.011

Arresting early hematoma growth with quicker hemostatic therapy

FASTEST STUDY

- rFVIIa
- < 2 hrs from onset</p>
- ICH <u>></u> 2 and < 60 cc</p>
- 860 pts
- NIH Stroke Net
- EFIC
- At least 15 international MSUs

Next Steps

- 1. Complete prospective health utilities and QOL analysis
- 2. Approach payers with data for appropriate reimbursement
- 3. Updating of practice guideline statements to reflect new efficacy data
- 4. Inclusion of MSUs in pre-hospital matrix for stroke centers
- 5. Additional areas of clinical research
 - 1. Clinical trials of new stroke treatments—fVIIa for ICH, TNK
 - 2. Speeding EVT
 - 3. Validation of newer diagnostic modalities—biomarkers, LVO or blood detection
 - 4. Additional studies in rural/underserved populations
 - 5. Implementation research– earlier alerting, more accurate triage, better coordination with EMS and destination hospitals
 - 6. Shared registry database among global MSUs—PRESTO
 - 7. Application to other diseases—cardiac arrest, head trauma

Conclusions.... BEST-MSU Study

- Groups balanced; diverse population from 7 sites
- Only 3% lost to follow-up
- Completed on schedule despite COVID
- Results were robust to the various statistical methods, all outcomes, and sensitivity analyses.
- MSU management c/w Standard:

 - <u>17% more treated with tPA (97% vs 80%)</u>
 <u>30% more treated within first "golden hour" from LKN (33%</u> vs 3%)
 - Significantly improved patient-centered outcomes (p=0.002)
 - 10% more with mRS 0,1 at 90 days (53% vs 43%) (p< 0.001)
 - Results also positive if including all 1515 enrolled (transported) pts
 - No safety issues...9% mimics and 2% sICH in each group
- 1 year f/u for health care utilization and QOL ongoing