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Measurement-based care:
Uptake of PHQ9 in 4 MHRN health systems
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Data make new questions:

 Providers ask: What does it mean if my patient reports thoughts of 

death or self-harm “nearly every day”?

 Researchers answer: Nobody knows.  But we could be the first to 

find out.

SO WE LOOKED….
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Risk of suicidal behavior following completion of PHQ9
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Rapid implementation: Be careful what you wish for!
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Risk stratification using PHQ9 Item 9

6 September 26, 2017

% of

Visits

Item 9 

Score

Actual 

Risk

% of 

Suicide

Attempts

2.5% 3 2.3% 20%

3.5% 2 1.4% 19%

11% 1 0.7% 26%

83% 0 0.2% 35%

Mental health specialty visits - Suicide attempt within 90 days

Sensitivity:  35% missed
Efficiency: Top 6% identifies 39% of events
AND – PHQ9 scores missing for significant minority of visits



MHRN2 Suicide Risk Calculator Project

 Settings
– 7 health systems (HealthPartners, Henry Ford, KP Colorado, KP Hawaii, KP 

Northwest, KP Southern California, KP Washington)
– 8 million members enrolled

 Visit Sample
– Age 13 or older
– Specialty MH visit OR primary care visit with MH diagnosis

 Outcomes
– Encounter for self-inflicted injury/poisoning in 90days
– Death by self-inflicted injury/poisoning in 90 days

September 26, 20177



Design decisions

 Cohort design (rather than case-control)
– Health system leaders want accurate estimation of absolute risk
– BUT, more computationally intensive

 Sample visits (rather than people)
– Directly inform current visit-based standard work
– BUT, makes variance estimation more complicated

 Focus on 90-day risk (rather than longer)
– Health system leaders ask “When can you turn off that alarm?”
– BUT, smaller number of events reduces precision

 Use parametric (logistic) models – more later from Susan
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Potential predictors

Approximately 150 indicators for each visit:

 Demographics (age, sex, race/ethnicity, neighborhood SES)

 Mental health and substance use diagnoses (current, recent, last 5 yrs)

 Mental health inpatient and emergency department utilization

 Psychiatric medication dispensings (current, recent, last 5 yrs)

 Co-occurring medical conditions (per Charlson index)

 PHQ8 and  item 9 scores (current, recent, last 5 yrs)

Approximately 200 possible interactions (e.g. item 9 score WITH diagnosis of bipolar 
disorder)
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Sample description:

 19.6 million visits for approx. 2.9 million people

 51% MH specialty and 48% primary care

 Race/Ethnicity: 14% Hispanic, 9% African American, 5% Asian

 Insurance source: 5% Medicaid, 20% Medicare

 Diagnoses: 1.5 million with bipolar disorder, 690K  with psychotic disorders

 1.9 million have PHQ item 9 score recorded

 24,000 visits followed by suicide death (2108 unique events)

 440,000 visits followed by suicide attempt (29,423 unique events)
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Teaching a computer to classify using data

 Programming requires giving the computer very specific instructions 
about what to do in all scenarios possible

– Time consuming and can be very difficult

– Especially when the set of all possible scenarios is very large

 Machine learning: let the machine learn to classify by example 

– Give the computer a set of examples already classified along with information 
about those examples (i.e. a training set)

 A data set with features (variables/predictors) that describe each item

 Identifies the correct classification of each item in the set of examples

– Supervised learning

– Lots of different approaches to having the computer learn from example
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Machine learning to predict suicide attempts

 Goal: classify visits into those that will have and will not have a 
suicide attempt following the visit

– Binary classification problem (0=no attempt, 1=attempt)

 People and health care visits have lots of “features” (predictors)

– People: Age, sex, race/ethnicity 

– Visit:: Diagnoses, procedures, location, patient-reported outcomes (depression 
severity, suicidal ideation, alcohol or drug use), medications

 Give the computer some examples

– Visits for which we know if a suicide attempt occurred in the 90 days following

– Specify lots of features of the visits and allow machine to learn which are 
important for predicting which visits have a suicide attempt in the 90 days after
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Selecting a machine learning method

 Used a logistic regression model for our classifier

– Allowed the computer to select what features it used to classify

– Created several hundred possible predictors to choose from

 Several factors impacted our selection of a parametric approach

– Non-parametric approaches tend to be black box

 Wanted a more transparent approach

– Most predictors were categorical

 Non-parametric approaches differ most in handling continuous-valued predictors 

– Anticipated parametric approach easier to implement 

 Prediction models that use simple addition and multiplication straightforward to 
implement within some electronic medical records systems

– Potential protection against overfitting in a setting with rare outcomes
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Tuning to prevent overfitting

 Overfitting: Good performance on the training data, but bad 
performance elsewhere

 A tuning parameter is often used to balance performing well on the 
training data and performing well in the future

– Also called a regularization parameter

 Used Lasso to select important predictors of suicide attempt

– Least absolute shrinkage and selection operator

– Lasso selects predictors from a list

 Coefficients of less powerful predictors shrunk to zero

 Tuning parameter controls how much coefficients shrunk
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Lasso in words, lasso in math

 Lasso selects predictors from a list

– Coefficients of less powerful predictors shrunk to zero

 Predictors excluded if coefficient equal to zero

– Tuning parameter (λ) controls how much coefficient shrunk
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Traditional MLEs 

for logistic regression

Shrinks some    

MLE estimates 



Training, tuning, and evaluating

 Split our data (19.6 million visits) into pieces 

 Training set: Used 65% of data to learn how to predict suicide attempt

– Left 35% of the data to evaluate performance (validation set)

 Cross-validation in training set to select tuning parameter

– 10-fold: divide training set into 10 pieces 

– Fit model with different tuning parameters on 90% of training set ten times

 Evaluate each model’s performance on the other 10% of the training set ten times

– Select tuning parameter value that did the best in the prediction part of training

 Final model fit on all training data using selected tuning parameter

– Use this model to predict risk of suicide attempt in the validation set

– Evaluate performance of the predictions of this final model in the validation set
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Suicidal behavior in 90 days: top 15 predictors in MH specialty care:

SUICIDE ATTEMPT FOLLOWING MH VISIT

(of 94 selected)

SUICIDE DEATH FOLLOWING MH VISIT

(of 62 selected)

Depression diagnosis in last 5 yrs. Suicide attempt diagnosis in last year

Drug abuse diagnosis in last 5 yrs. Benzodiazepine Rx. in last 3 mos

PHQ-9 Item 9 score =3 in last year Mental health ER visit in last 3 mos

Alcohol use disorder Diag. in last 5 yrs 2nd Gen. Antipsychotic Rx in last 5 years

Mental health inpatient stay in last yr. Mental health inpatient stay in last 5 years

Benzodiazepine Rx. in last 3 mos. Mental health inpatient stay in last 3 mos

Suicide attempt in last 3 mos. Mental health inpatient stay in last year

Personality disorder diag. in last 5 yrs. Alcohol use disorder Diag. in last 5 years

Eating disorder diagnosis in last 5 yrs. Antidepressant Rx in last 3 mos

Suicide Attempt in last year PHQ-9 Item 9 score = 3 with PHQ8 score

Mental health ER visit in last 3 mos. PHQ-9 item 9 score = 1 with Age

Self-inflicted laceration in last year Depression diag. in last 5 yrs. with Age

Suicide attempt in last 5 yrs. Suicide attempt diag. in last 5 yrs. with Charlson Score

Injury/poisoning diagnosis in last 3 mos. PHQ-9 Item 9 score = 2 with Age

Antidepressant Rx. in last 3 mos. Anxiety disorder diag. in last 5 yrs. with Age

Similar predictors selected for primary care visits

September 26, 201718



Predicting suicidal behavior in 90 days after MH visit

AUC=0.850 (0.847 - 0.853) AUC=0.861 (0.845 - 0.877)

MH Visits, Suicide attempt risk at 90 days
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PC Visits, Suicide death risk at 90 days
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AUC values for previous risk prediction models:

 Prediction of suicidal behavior:
– Suicide death after medical hospitalization 0.74
– Suicide death after OP visit (Army STARRS) 0.67
– Suicide death in VA service users 0.76
– Suicide attempt/death in health system 0.77

 Prediction of adverse medical events:
– High ER utilization 0.71
– Re-admission for CHF 0.62
– In-hospital mortality after sepsis 0.76
– Re-admission for CHF 0.78

* - no independent validation, so this is may be an over-estimate

September 26, 201720



Risk scores vs. PHQ9 Item 9 scores
Fewer events “missed” at the bottom

% of

Visits

Item 9 

Score

Actual 

Risk

% of 

Attempts

2.5% 3 2.3% 20%

3.5% 2 1.4% 19%

11% 1 .72% 26%

83% 0 .19% 35%

% of Visits Predicted 

Risk

Actual 

Risk

% of All 

Attempts

>99.5th 13.0% 12.7% 10%

99th to 99.5th 8.5% 8.1% 6%

95th to 99th 4.1% 4.2% 27%

90th to 95th 1.9% 1.8% 15%

75th to 90th 0.9% 0.9% 21%

50th to 75th 0.3% 0.3% 13%

<50th 0.1% 0.1% 8%
Excludes all those missing PHQ9!
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Risk scores vs. PHQ9 Item 9 scores:
Greater concentration of risk at the top

% of

Visits

Item 9 

Score

Actual 

Risk

% of 

Attempts

2.5% 3 2.3% 20%

3.5% 2 1.4% 19%

11% 1 .72% 26%

83% 0 .19% 35%

Percentile of 

Visits

Predicted 

Risk

Actual 

Risk

% of All 

Attempts

>99.5th 13.0% 12.7% 10%

99th to 99.5th 8.5% 8.1% 6%

95th to 99th 4.1% 4.2% 27%

90th to 95th 1.9% 1.8% 15%

75th to 90th 0.9% 0.9% 21%

50th to 75th 0.3% 0.3% 13%

<50th 0.1% 0.1% 8%
Excludes all those missing PHQ9!
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Using risk scores to drive standard work:

 During visits:

– Trigger completion of CSSRS (as we do now based on PHQ9 Item 9 response)

– Trigger creation/updating of safety plan (as we do now based on  CSSRS score)

 Between visits:

– Outreach for higher-risk patients who cancel or fail to attend scheduled visits

– Outreach for higher-risk patients without follow-up scheduled within recommended 
interval
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Implementation questions:

 For any threshold, risk scores are both more sensitive and more efficient 
than what we do now (item 9 of PHQ9).

 But…should we really ask providers to ignore item 9 responses?
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Implementation questions:

 For any threshold, risk scores are both more sensitive and more efficient 
than what we do now (item 9 of PHQ9).

 But…should we really ask providers to ignore item 9 responses in favor 
of an algorithm?

 Empirical vs. Experiential knowledge:  Philosophers call this “The 
Richard Pryor Problem”
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