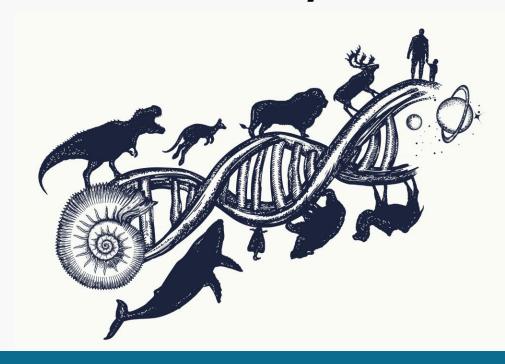


Multi-domain Rehabilitation for Older Patients with Myocardial Infarction

The PIpELINe trial


- Elisabetta Tonet, MD
- On behalf of the PIpELINe investigators
- University Hospital of Ferrara

Contemporary myocardial infarction MANAGEMENT has evolved dramatically in the XX century

Origins — physical inactivity

The Journal of the American Medical Association

aı

Published Under the Auspices

Vol. L1X, No. 23

CHICAGO, 11:

CLINICAL FEATURES OF SUDDEN OBSTRUCTION OF THE CORONARY
ARTERIES

JAMES B. HERRICK, M.D. CHICAGO

James B Herrick (1861–1954)

"The importance of absolute rest in bed for several days is clear."

19_{10s}

«The importance of absolute rest in bed for several days is clear»

Origins — physical inactivity

CARDIAC INFARCTION AND CORONARY THROMBOSIS.

BY JOHN PARKINSON, M.D., F.R.C.P. LOND., PHYSICIAN (WITH CHARGE OF OUT-PATIENTS) AND PHYSICIAN IN

CHARGE OF THE CARDIOGRAPHIC DEPARTMENT, LONDON HOSPITAL * PHYSICIAN TO THE NATIONAL HOSPITAL FOR DISEASES OF THE HEART;

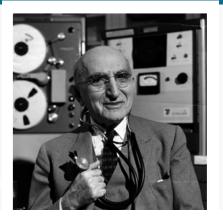
AND

D. EVAN BEDFORD, M.D., M.R.C.P. LOND.,
ASSISTANT PHYSICIAN TO THE MIDDLESEX HOSPITAL.*

1920s

Absolute rest in bed for not less than a month is imperative to allow healing of the infarct and to reduce the risk of embolism. The subsequent management will be that of a patient known to be arteriosclerotic and prone to anginal pain, though the probability of another cardiac infarction is not great. Convalescence will therefore be prolonged and the return to ordinary life postponed as long as possible. If exertion is restricted to less than that which induces pain greater capacity may ultimately be obtained.

The Turning point



THE EVIL SEQUELAE OF COMPLETE

BED REST

WILLIAM DOCK,

NO. ANGELES

1950s

The Turning point

THE JOURNAL

of the American Medical Association


Published Under the Auspices of the Board of Trustees

VOL. 148, NO. 16

CHICAGO, ILLINOIS COPYRIGHT, 1952, BY AMERICAN MEDICAL ASSOCIATION APRIL 1

"ARMCHAIR" TREATMENT OF ACUTE CORONARY THROMBOSIS

Samuel A. Levine, M.D. Bernard Lown, M.D., Boston

- 1. Physiological as well as clinical studies adduce evidence to support the view that strict rest in bed is injurious to the patient with congestive heart failure.
- 2. The sitting position in a chair with the feet dependent obviates some of the harm of strict bedrest.
- 3. This principle has been applied in the treatment of 81 patients with acute coronary thrombosis. These patients were kept in a chair varying and increasing portions of the day, beginning not later than the first week of the attack.
- 4. There were eight deaths, an over-all mortality of 9.9%. All other methods of treatment usually employed in coronary thrombosis were used. If only the patients who received anticoagulants are considered (72 patients), the mortality was only 8.3%. There were no complications attributable to the "armchair" treatment. The prompt improvement shown by some of those desperately ill with congestive heart failure after being placed in a chair was particularly impressive.
- 5. This method of treatment also appeared to have beneficial effects on the psychological state of the patient and facilitated the rehabilitation process.

The Progress

The first early ambulation program in the world (1962)

Dr Nanette Wenger

- 14-step program with a progressive step each day
 - Discharge by day 18
 - Patients were up and walking around their beds in the first couple of days while still attached to the monitor.

The Birth of Cardiac rehabilitation

EXERCISE THERAPY IN CORONARY DISEASE*

1970s

HERMAN K. HELLERSTEIN

Associate Professor of Medicine
Western Reserve University School of Medicine
Associate Physician
University Hospitals of Cleveland
Cleveland, Ohio

Cardiac rehabilitation concept

-Inpatient model to outpatient programs

-Focus on physical activity

3 phases - 3 issues

inpatient mobilization

outpatient hospital-based program 6–12 weeks

maintenance phase 4–6 months

2

30-50% of those eligible are referred

10% actually attend structured programs

<5% complete a full program

The diffusion of traditional programs

Features of programs	No. of programs
Model of care [†]	programs
Education and counselling with supervised exercise	260 (70%)
5 .	, ,
Education and counselling without supervised exercise	67 (18%)
Exercise only	18 (5%)
Setting [‡]	
Hospital	190 (51%)
Home	15 (4%)
Community	91 (25%)
Flexible	64 (17%)
Time-limited	267 (72%)
Group-based	288 (78%)
Maintenance offered	125 (34%)
Heart failure management program offered	64 (17%)

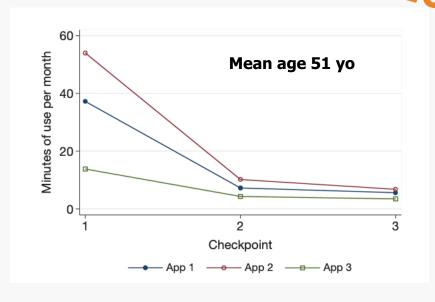
Low enrollment of older adults

High number of sessions

Late onset after MI

Mainly physical exercises

Standardized activities


No long-term maintenance

The modern attempt

- >50% of users stopped wearing them within six months
- <20% keep using them after six months
- No multi-domain

Evolution

Contemporary myocardial infarction PATIENT has evolved significantly in the XX century

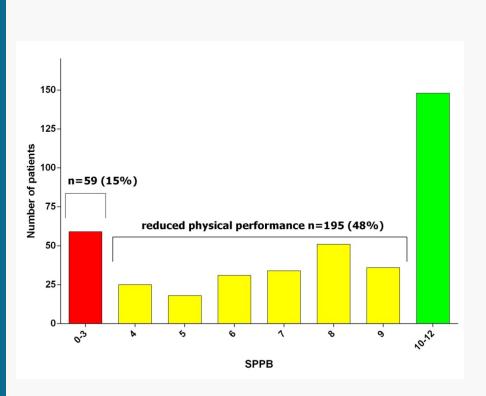
2/3 MI patients >65 yo

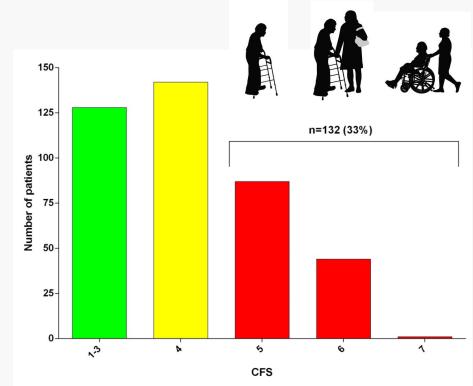
Slow walking Low level of physical activity

Fatique or exhaustion

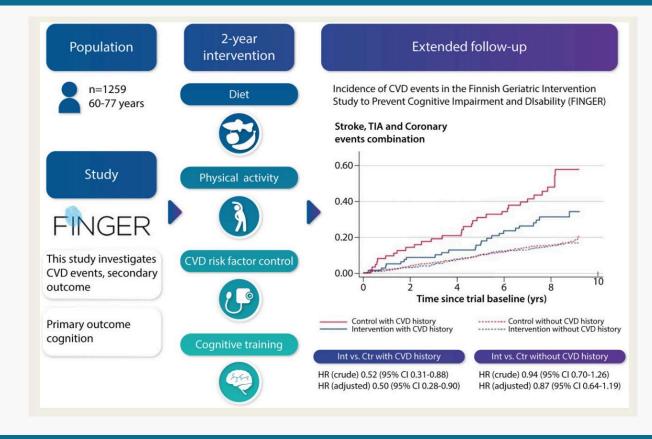
Unintentional weight loss

speed

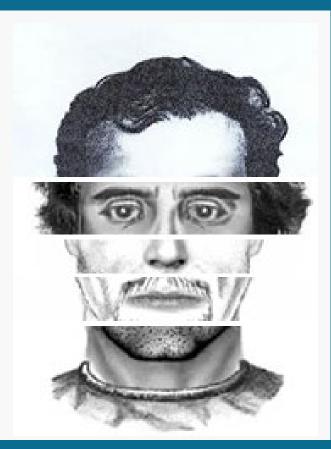




Peculiarity



Multi-dimensionality



Multi-dimensional Early

Supervised sessions

Home-based program

Tailored

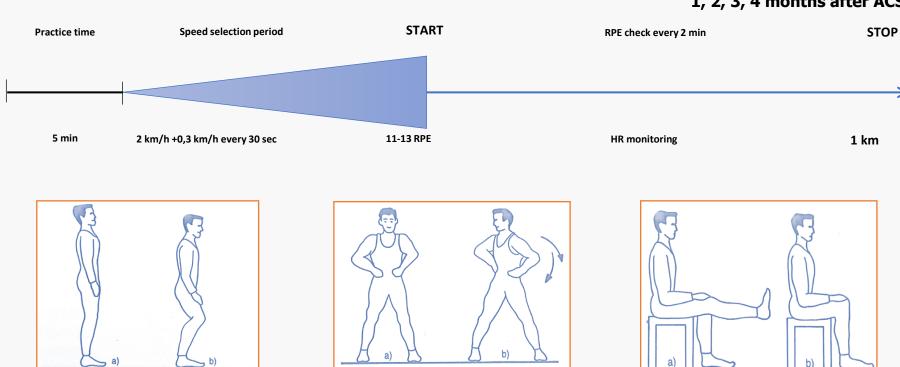
The HULK pilot study

Prospective, Multicentre, Randomized

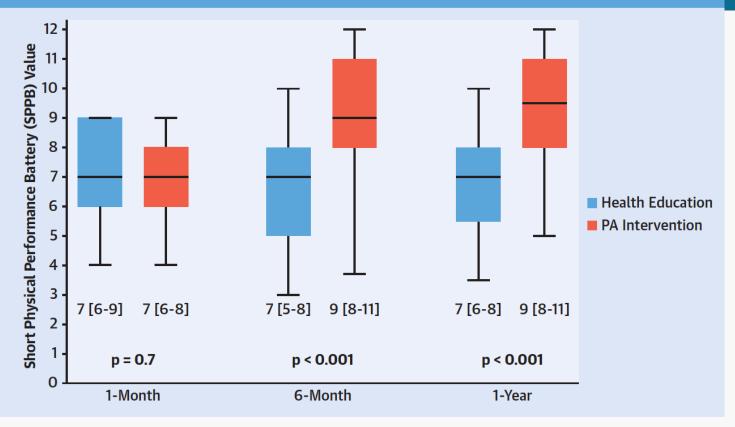
235 patients with ACS, aged ≥ 70 y, SPPB 4-9

Primary Endpoint: SPPB value 6 months after ACS

Secondary Endpoints


- -Handgrip strenght
- -Gait speed
- -Quality of life
- -aADL

Physical activity model


1, 2, 3, 4 months after ACS

Background

- Despite advancements in acute care, older patients presenting with myocardial infarction (MI) are the highest risk population with the worst prognosis¹
- Older adults represent the least physically active group with often experiencing functional decline, frailty and disability after MI²
- Traditional cardiac rehabilitation programs show several limitations such as low participation rate, early withdrawal and high costs, especially in older patients³

Research Question

•To evaluate whether, in older patients (65+ years old) admitted to hospital for MI and with impaired physical performance, an early, tailored, multi-domain rehabilitation intervention was superior as compared to standard of care in improving outcomes.

Organization

Country: Italy

7 centers

Study PI: Gianluca Campo

Study Chair: Giovanni Grazzi

Executive Committee: Elisabetta Tonet, Stefano

Volpato, Andrea Raisi, Gianni Mazzoni

CEC: Rita Pavasini, Paolo Cimaglia

DSMB: Simone Biscaglia, Roberta Campana

ARO: Veronica Lodolini, Chiara Manzalini, Cecilia

Chiarelli, Elisa Mosele, Martina Viola, Alice Santoni

Stats: Donato Martella, Nicola Pesenti

The Physical Activity Intervention in Elderly Patients with Myocardial Infarction (PIpELINe) trial was an investigator-initiated, multicenter, prospective, superiority, randomized trial.

Sponsor

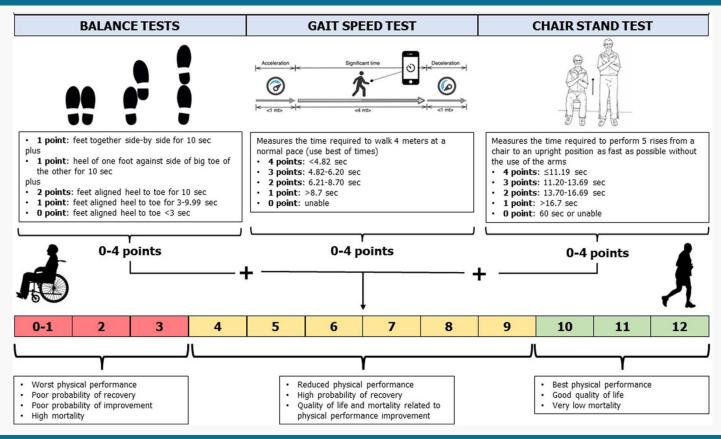
Università degli Studi di Ferrara

Supporter

Ricerca Finalizzata 2018

GR 2018-12367114

Inclusion and Exclusion Criteria


- 65+ years old
- MI (STE or NSTE-MI)
- Indication to invasive management
- SPPB value 4-9 at 1-month

- Planned coronary revascularization
- Life expectancy to < 1 year
- Severe aortic or mitral disease
- Ejection fraction <30%
- NYHA class III-IV
- Severe cognitive impairment
- Physical impairment

Short Physical Perfomance Battery

Study Design

Pts ≥65 ys hospitalized for MI (STE or NSTE) with indication to invasive management

Short Physical Performance Battery (SPPB) 4-9 at 1-month

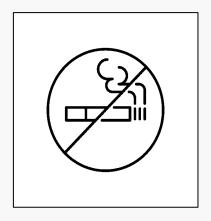
Multi-domain Rehabilitation

Health Education

6-month, 1- and 3-year follow-up

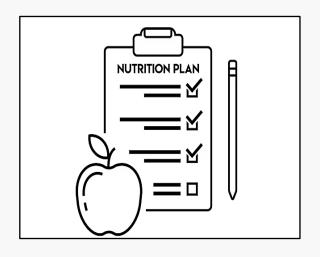
We assumed that 25% of patients in the control group would experience a primary-outcome event. With an anticipated relative risk reduction of at least 40% in the interventional group, we determined that enrolling at least 435 patients would provide the trial with 80% power to demonstrate the superiority of the intervention over usual care, at an alpha of 5%. To account for an anticipated 5% attrition, the final sample size was increased to at least 456 patients.

Intervention

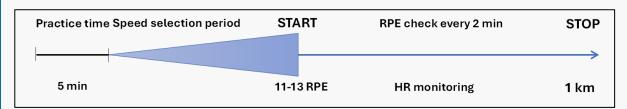


Metabolic Risk Factors Control

Risk factor management at each visit, targeting improvements in blood pressure, lipid profiles, blood glucose, and smoking cessation.


Intervention

Diet Counselling


A nutritional status assessment was performed and each patient received a tailored diet plan

Intervention

Exercise Training

Supervised sessions (1-, 2-, 3-, 6-, 9-,12-month)

Tailored home-based exercises 20 minutes x3-5 days moderate walking

Exercise intensity and progression were individualized based on patient performance at each session. 1,2,3

End Points (at 1-year)

Primary

CV death or unplanned hospitalization for CV causes

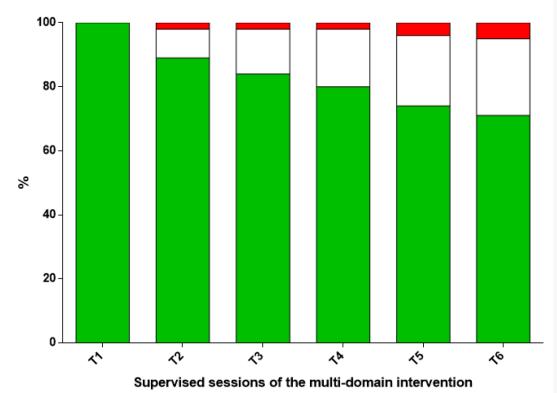
Secondary

Death, HF, MI, revasc, CVA, Unplanned hospitalization

Other

SPPB, gait speed, handgrip strength, QoL

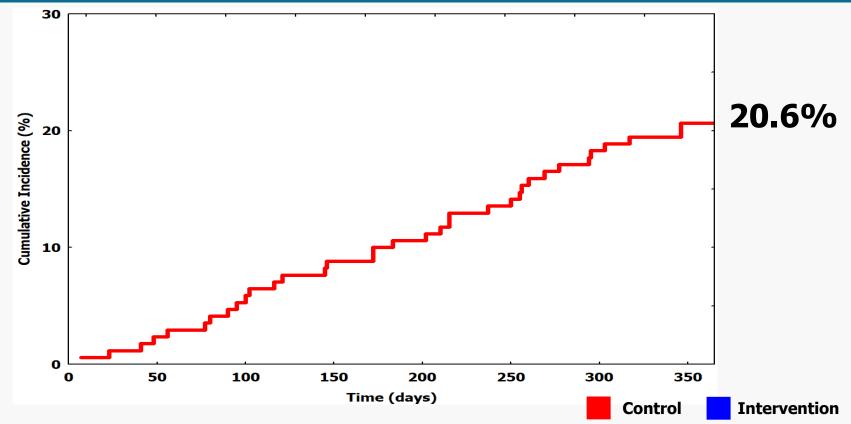
Baseline Characteristics


Characteristic	Control (N=170)	Intervention (N=342)			
Age (IQR) - yr	80 (76-83)	80 (75-84)			
Female sex	65 (37.6)	122 (35.7)			
Comorbidities					
Hypertension	148 (87.1)	294 (86)			
Diabetes	50 (29.4)	87 (25.4)			
Prior MI	45 (26.5)	81 (23.7)			
eGFR <60 ml/min	33 (19.4)	56 (16.4)			
PAD	35 (20.6)	74 (21.6)			
Clinical presentation					
STEMI	63 (37.1)	127 (37.1)			
NSTEMI	107 (62.9)	215 (62.9)			

Characteristic	Control (N=170)	Intervention (N=342)			
Nutritional Status					
Normal	118 (69.4)	232 (67.8)			
At risk for malnutrition	47 (27.6)	96 (28.1)			
Malnourished	5 (2.9)	14 (4.1)			
Physical performance					
SPPB score	8 (6-9)	7 (6-9)			
Gait speed	0.6 (0.5-0.8)	0.7 (0.5-0.8)			
Handgrip strength					
Men	30 (22-36)	30 (25-37)			
Women	21 (17-32)	20 (15-28)			

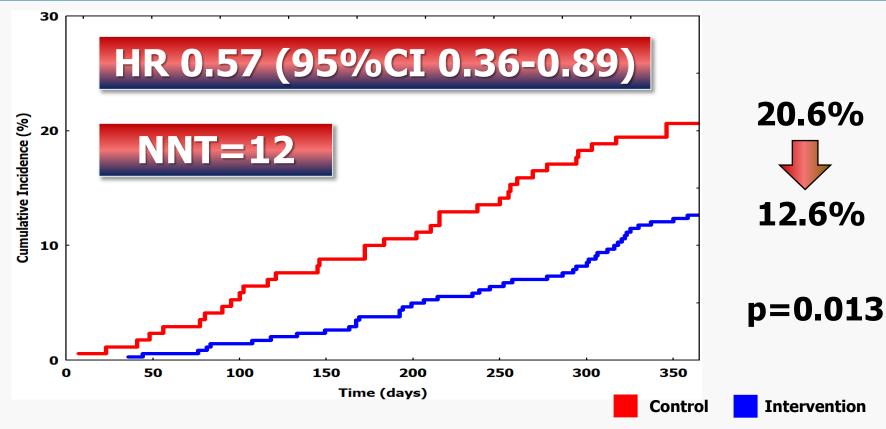
Compliance to Intervention

There were no serious adverse events reported during the supervised training sessions.


The overall compliance with the intervention was

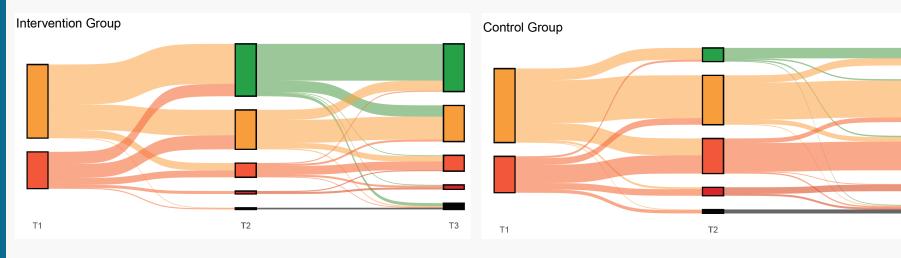
71% (95%CI 65%-75%)

Primary End Point



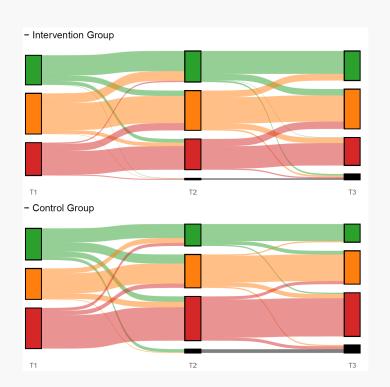
Primary End Point

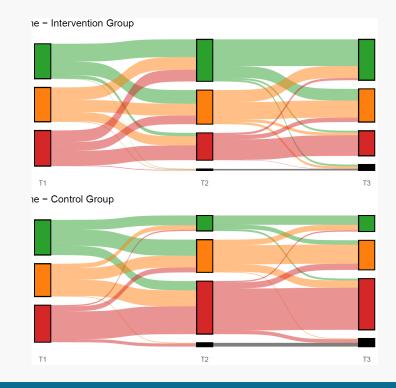
Secondary End Points


	Control	Intervention		
Outcome	(n=170)	(n=342)		
	no. (%)	no. (%)	Hazard Risk	Р
	1101 (70)	1101 (70)	(95% CI)	·
Death	13 (7.6)	19 (5.6)	0.72 (0.35-1.45)	0.36
Cardiovascular death	10 (5.9)	14 (4.1)	0.69 (0.31-1.55)	0.37
Unplanned CV hospitalization	30 (17.6)	31 (9.1)	0.48 (0.29-0.79)	0.004
- Heart failure	12 (7.1)	5 (1.5)	0.20 (0.07-0.56)	0.002
- Myocardial infarction	10 (5.9)	13 (3.8)	0.63 (0.28-1.44)	0.26
- Revascularization	8 (4.7)	13 (3.8)	0.80 (0.33-1.93)	0.62
- Stroke	2 (1.2)	3 (0.9)	0.74 (0.12-4.43)	0.74
Unplanned hospitalization for any cause	39 (22.9)	56 (16.4)	0.67 (0.44-1.01)	0.06
Unplanned non-CV hospitalization	13 (7.6)	28 (8.2)	1.06 (0.55-2.02)	0.86

Other End Points

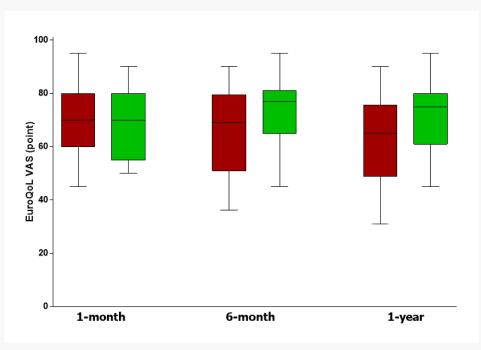
SPPB




Other End Points

Handgrip

Gait Speed



Other End Points

Quality of Life

- Open-label design
- Selection bias (1-month survivors)
- Multi-domain rehabilitation (impact each component)
- Supervised vs. home-based sessions
- Preserved cognitive function
- Longer-term follow-up is needed

Conclusions

- A multi-domain rehabilitation reduces CV death or unplanned hospitalization for CV causes in older MI patients with impaired physical performance
- CV care in older MI patients is now based on RCT data!

Strategy

Revascularization

Rehabilitation

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Multidomain Rehabilitation for Older Patients with Myocardial Infarction

Elisabetta Tonet, M.D.,¹ Andrea Raisi, Ph.D.,² Silvia Zagnoni, M.D.,³ Giorgio Chiaranda, M.D.,⁴ Giovanni Pasanisi, M.D.,⁵ Daniela Aschieri, M.D.,⁶ Paola Emanuela D'Intino, M.D.,ˀ Rita Pavasini, M.D.,¹ Paolo Cimaglia, M.D.,¹ Roberta Campana, M.D.,³ Francesco Vitali, M.D.,¹ Tommaso Piva, Ph.D.,² Gianni Casella, M.D.,³ Serena Caglioni, M.D.,¹ Valentina Zerbini, Ph.D.,² Giulia Bugani, M.D.,³ Marta Cocco, M.D.,¹ Erica Menegatti, Ph.D.,² Martina De Raffele, M.D.,¹ Simona Mandini, Ph.D.,² Donato Martella, M.Sc. Stat,⁶ Nicola Pesenti, M.Sc. Stat,⁶ Gianni Mazzoni, M.D.,² Simone Biscaglia, M.D.,¹ Stefano Volpato, M.D.,¹ Giovanni Grazzi, M.D.,² and Gianluca Campo, M.D.,¹ for the PIpELINe Trial Investigators*

Elisabetta Tonet, Gianluca Campo, Francesco Vitali, Serena
Caglioni, Rita Pavasini, Paolo Cimaglia, Veronica Amantea, Luca
Canovi, Gabriele Guidi Colombi, Marco De Pietri, Alberto
Boccadoro, Antonella Scala, Giovanni Grazzi, Gianni Mazzoni,
Andrea Raisi, Tommaso Piva, Valentina Zerbini, Erica Menegatti,
Simona Mandini, Gianni Casella, Silvia Zagnoni, Giulia Bugani,
Marta Cocco, Martina De Raffele, Camilla Matese, Maria Letizia
Berloni, Paola Emanuela D'Intino, Daniele Ferrarini, Daniela
Aschieri, Federico Gibiino, Valentina Pelizzoni, Francesco di
Spigno, Gisella Moruzzi, Giorgio Chiaranda, Riccardo Poma,
Fabio Sperandii, Graziella Fiumana, Giovanni Pasanisi, Marco
Cecchin, Rosario Lordi

Extremely grateful to the 512 patients and their caregivers.

https://elementrials.org

@Elisabettabex