

Better treatments. Better care. Healthier societies.

Effects of reduced-sodium, added-potassium salt substitute on stroke – the salt substitute and stroke study (SSaSS)

Professor Bruce Neal

Executive Director The George Institute, Australia

Funded by the National Health and Medical Research Council of Australia

Sodium, potassium and salt substitute

- Both higher sodium consumption and lower potassium consumption are associated with higher BP levels.
- Randomised trials show clear BP lowering effects with reduced dietary sodium or added dietary potassium.
- Salt substitutes combine the two effects with clear benefits for BP in randomised trials.

But

- Effects of salt substitutes on cardiovascular events unproven
- Salt substitution carries a theoretical risk of hyperkalaemia
- Concerns raised about reducing dietary sodium intake

Salt Substitute and Stroke Study (SSaSS)

The primary aim was to define the effect of salt substitute versus regular salt on stroke

- The secondary aims were to define the effects on:
 - Major adverse cardiovascular events
 - o Total mortality
- The safety outcome was hyperkalaemia

Endpoint adjudication masked to treatment allocation for all outcomes

Participants and recruitment

- 600 villages and about 35 participants from each village
- · Adults with history of stroke, or
- Age 60+ years with poorly controlled BP
- No self-reported history of severe kidney disease, use of potassium supplements or use of potassium sparing diuretics
- No blood test for renal function or serum potassium

Design

- Pragmatic, large-scale (n=20,995), open, cluster randomised trial
- Salt substitute (75%NaCl, 25%KCl) versus regular salt (100%NaCl)

Statistical power and analysis

- 90% power (p=0.05) to detect a 13% lower risk of stroke with salt substitute compared to regular salt. Assumptions:
 - 3.0mmHg BP lowering
 - 3.5% p.a. primary outcome event rate
 - Cluster randomisation of 600 villages in 1:1 ratio
 - Intra-cluster correlation coefficient =0.04
- Primary analysis using Poisson regression, adjusted for clustering by village with rate ratios, 95%CIs and p-values calculated
- Control for multiple testing across primary and secondary outcomes was done using the Benjamini-Hochberg approach
- The Kaplan Meier method used to generate cumulative event curves

Participant characteristics

	Salt substitute	Regular salt
Age (years), mean	65	65
Women, %	50	49
Education beyond primary, %	28	27
History of stroke, %	73	72
Uncontrolled blood pressure, %	59	59
Diabetes, %	11	11
Hypertension, %	89	88
ACE/ARB, %	23	23
Calcium antagonist, %	43	41
Any antihypertensive, %	80	79
Mean blood pressure, mmHg	154/89	154/89
Mean 24-hour urinary sodium, mmol (g)*	191 (4.4)	182 (4.2)
Mean 24-hour urinary potassium, mmol (g)*	36 (1.4)	36 (1.4)

*calculated from subset of 539 individuals with complete baseline 24-hour urine collections. Source: Neal, Am Heart J 2017

Follow-up and adherence

Follow-up

- Mean follow-up 4.74 years
- 100% vital status for all participants
- 99.9% complete follow-up for non-fatal outcomes
- At 5 years, 92% intervention group still using salt substitute and 6% control group started using salt substitute

Effects on blood pressure

ime Point	Salt Substitute	Regular Salt	Mean Difference (95% CI)	
	no. of part	ticipants		
Baseline	10,504	10,491		-0.40 (-2.50 to 1.70)
12 Mo	768	658		-4.60 (-8.10 to -1.10)
24 Mo	1,412	1,374		-1.30 (-4.10 to 1.50)
36 Mo	584	584		-4.90 (-8.75 to -1.05)
48 Mo	587	559		-3.80 (-7.60 to 0.00)
50 Mo	7,436	7,081		-3.40 (-5.00 to -1.80)
Fixed-Effects Model			\diamond	-3.34 (-4.51 to -2.18)
Heterogeneity: I ² =0%; P=0.52			-10 -8 -6 -4 -2 0 2 4	
Diastolic Blood Pressure (mm Hg)				
Diastolic Blood Pressure (mm Hg)	Salt Substitute	Regular Salt		
	Salt Substitute no. of part	-	Mean Difference (95% CI)	
Time Point		-	Mean Difference (95% CI)	-0.30 (-1.55 to 0.95)
Time Point Baseline	no. of part	ticipants	Mean Difference (95% CI)	-0.30 (-1.55 to 0.95) -1.00 (-3.55 to 1.55)
Time Point Baseline 12 Mo	no. of part 10,504	ticipants 10,491	Mean Difference (95% CI)	1 1
Time Point Baseline 12 Mo 24 Mo	no. of part 10,504 768	ticipants 10,491 658	Mean Difference (95% CI)	-1.00 (-3.55 to 1.55)
Time Point Baseline 12 Mo 24 Mo 36 Mo	no. of part 10,504 768 1,412	ticipants 10,491 658 1,374	Mean Difference (95% CI)	-1.00 (-3.55 to 1.55) 0.00 (-1.85 to 1.85)
Time Point Baseline 12 Mo 24 Mo 36 Mo 48 Mo	no. of part 10,504 768 1,412 584	ticipants 10,491 658 1,374 584	Mean Difference (95% CI)	-1.00 (-3.55 to 1.55) 0.00 (-1.85 to 1.85) 0.70 (-2.30 to 3.70)
Diastolic Blood Pressure (mm Hg) Time Point Baseline 12 Mo 24 Mo 36 Mo 48 Mo 60 Mo Fixed-Effects Model	no. of part 10,504 768 1,412 584 587	ticipants 10,491 658 1,374 584 559	Mean Difference (95% CI)	-1.00 (-3.55 to 1.55) 0.00 (-1.85 to 1.85) 0.70 (-2.30 to 3.70) -1.70 (-4.40 to 1.00)

Effects on urinary electrolytes

C 24-Hr Urinary Sodium Excretion (m	imol)			
	Salt Substitute	Regular Salt		
Time Point	no. of part	icipants	Mean Difference (95% CI)	
Baseline	276	268		9.96 (-12.39 to 32.32)
12 Mo	577	445	← →	-15.69 (-41.05 to 9.66)
24 Mo	1,047	939	← I	-22.45 (-41.52 to -3.37)
36 Mo	428	392		-12.55 (-30.41 to 5.31)
48 Mo	444	383		-7.89 (-24.73 to 8.95)
60 Mo	424	358		-19.95 (-38.71 to -1.20)
Fixed-Effects Model			\sim	-15.21 (-23.72 to -6.70)
Heterogeneity: I ² =0%; P=0.81				
			-40 -30 -20 -10 0 10 20 30	
D 24-Hr Urinary Potassium Excretion	(mmol) Salt Substitute	Regular Salt		
Time Point	no. of part	0	Mean Difference (95% CI)	
Baseline	276	268	+	0.63 (-3.36 to 4.62)
12 Mo	577	445		19.13 (12.82 to 25.45)
24 Mo	1,047	939		14.88 (9.73 to 20.03)
36 Mo	428	392		21.87 (17.15 to 26.60)
48 Mo	444	383		22.48 (17.78 to 27.18)
60 Mo	424	358		24.52 (18.74 to 30.30)
Fixed-Effects Model			♦	20.64 (18.30 to 22.98)
Heterogeneity: <i>I</i> ² =47.4%; P=0.11			-40 -30 -20 -10 0 10 20 30	. ,

Stroke

Total events = 3123

Participants with event = 2678

Rate ratio = 0.86 (0.77 to 0.96)

P value = 0.006

Major adverse cardiovascular events

for Global Health

Total mortality

Total events = 4172

Participants with event = 4172

Rate ratio = 0.88 (0.82 to 0.95)

P value < 0.001

Hyperkalaemia

Total events = 331

Participants with event = 315

Rate ratio = 1.04 (0.80 to 1.37)

P value = 0.76

Effects on stroke subtypes

Outcome	Salt Substitute	Regular Salt	Rate Ratio (95% CI)
	no. of events per 1		
Stroke	29.14	33.65	0.86 (0.77-0.96)
Fatal	6.78	8.79	0.77 (0.65-0.91)
Nonfatal	22.36	24.86	0.90 (0.80-1.01)
Ischemic	21.36	22.90	0.93 (0.82-1.05)
Hemorrhagic	4.37	6.30	0.69 (0.56-0.85)
Undetermined	3.41	4.45	0.76 (0.61-0.96)
Fatal or disabling	12.71	15.04	0.84 (0.73-0.97)
Nonfatal and nondisabling	9.14	9.33	0.99 (0.82-1.91)
Nonfatal and unknown severity	7.30	9.27	0.79 (0.67-0.92)
Definite	9.43	11.62	0.81 (0.70-0.94)
Probable	19.71	22.03	0.89 (0.78-1.02)
Possible	95.60	103.41	0.92 (0.85-0.99)
Nonfatal acute coronary syndrome	3.79	5.12	0.70 (0.52-0.93)

Effects on causes of death

Outcome	Salt Substitute	Regular Salt	Rate Ratio (95% CI)
	no. of events per 1		
Death from any cause	39.28	44.61	0.88 (0.82-0.95)
Undetermined	8.58	9.58	0.89 (0.75-1.06)
Nonvascular	7.76	8.73	0.89 (0.77-1.03)
Vascular	22.94	26.30	0.87 (0.79-0.96)
Fatal ischemic stroke	1.78	2.23	0.77 (0.55-1.07)
Fatal hemorrhagic stroke	2.55	3.38	0.75 (0.58-0.98)
Fatal undetermined type of stroke	2.45	3.18	0.77 (0.58-1.01)
Death from acute coronary syndrome	2.53	2.53	1.00 (0.75-1.32)
Fatal heart failure	1.10	1.30	0.88 (0.55-1.43)
Kidney-related death	0.32	0.34	0.97 (0.24-3.94)
Other known vascular causes	1.20	1.58	0.72 (0.45-1.14)
Sudden death from presumed vascular causes	11.01	11.76	0.94 (0.82–1.07)

The George Institute

Effects on stroke in subgroups

	Number of e Sa	vents per ´ It substitute F (10504)			Rate ratio o	95% confidence interval
Age	>65 y <=65 y	29.20 29.09	35.45 32.04		0.82 0.89	[0.72; 0.94] [0.79; 1.02]
Sex	Female Male	25.14 33.24	30.12 37.22		0.83 0.89	[0.72; 0.95] [0.78; 1.00]
Education	Less More	28.37 31.12	32.67 36.21		0.86 0.85	[0.77; 0.97] [0.73; 0.99]
Prior stroke	Yes No	35.97 11.75	41.49 15.14		0.86 0.78	[0.78; 0.95] [0.63; 0.98]
Diabetes	Yes No	34.34 28.56	43.82 32.49		0.78 0.87	[0.63; 0.97] [0.78; 0.97]
Hypertension	Yes No	29.05 29.97	33.21 37.15		0.87 0.80	[0.77; 0.97] [0.63; 1.00]
Anti- hypertensive	Yes No	26.28 33.41	30.38 38.51		0.86 0.86	[0.76; 0.98] [0.75; 0.98]
SBP	>153 mmHg <=153 mmHg	28.72 29.54	34.45 32.86		0.84 0.88	[0.74; 0.96] [0.77; 1.00]
DBP	>89 mmHg <=89 mmHg	32.71 25.64	36.89 30.47		0.90 0.81	[0.79; 1.02] [0.71; 0.93]
ВМІ	>24.6kg/m2 <=24.6kg/m2	27.77 30.53	31.56 35.88		0.86 0.85	[0.76; 0.98] [0.75; 0.97]
			0	.5 1 Rate ratio	1.5	

• All p homogeneity >0.20

Slideset Title Private & Confidential

Strengths and weaknesses

- Large-scale, long term, definitive outcomes
- Pragmatic risk screening
- Scalable and low-cost intervention
- Good power for key subgroups

- Population selected to be amenable to salt substitution
- Record linkage was likely imperfect
- Did not replace all dietary sodium
- No potassium measurement only clinical hyperkalaemia
- No assays of kidney function
- Done in a single country

Benefits and risks - potential health impact in China

- Comparative risk assessment modelling
- Nationwide implementation of salt substitution in China

	Current events in	Events averted		
	China (000s)	In 000s	% of current	
Cardiovascular deaths	4201	461	10.9	
Non-fatal strokes	4022	365	9.1	
Non-fatal heart attacks	1546	147	9.5	
TOTAL	9769	973	10.0	

Generalisability - potential health impact worldwide

- >50% dietary sodium consumed as discretionary salt
- 25-50% dietary sodium consumed as discretionary salt
- <25% dietary sodium consumed as discretionary salt</p>

- Relevant to everyone that eats salt
- Most relevant to the >5 billion people consuming most of their dietary sodium as 'discretionary' salt

Source: Bhat, Adv Nutr 2020

Conclusions and potential implications

SSaSS provides a definitive result - salt substitute is effective for the prevention of stroke, major cardiovascular events and premature death with no evidence of harm

Implementation strategies

- *Salt manufacturers and retailers* worldwide could switch to producing and marketing salt substitute at scale
- *Food processing industry* worldwide could reformulate products to lower sodium and higher potassium compositions
- *Governments* worldwide could design polices to promote salt substitute and discourage regular salt use
- *Consumers* worldwide could cook, season and preserve foods with salt substitute not regular salt

Acknowledgements

Management Committee

Bruce Neal (Chair), Yangfeng Wu, Paul Elliott, Lijing L. Yan, Nicole Li, Darwin Labarthe andd Maoyi Tian.

Data and Safety Monitoring Committee

Rory Collins (Chair), Zhengming Chen, Jonathan Emberson, Peter Sandercock, Paul Whelton supported by Sandrine Stepien.

Endpoint Adjudication Committee

Jie Yu (Chair), Weiping Sun, Junyan Liu, Fang Liu, Yun Jiang, Rong Hu, Yong Peng and Jiehui Shan

Local Investigators, Project Operations Group and Analysis Team

Xiangxian Feng, Ruijuan Zhang, Yuhong Zhang, Jingpu Shi, Jianxin Zhang, Liping Huang, Zhifang Li, Yan Yu, Yi Zhao, Bo Zhou, Jixin Sun, Yishu Liu, Xuejun Yin, Zhixin Hao, Ka-Chun Li, Xinyi Zhang, Peifen Duan, Faxuan Wang, Bing Ma, Weiwei Shi, Gian Luca Di Tanna, Sandrine Stepien, Sana Shan, Sallie Pearson, Yanqing Wang, Ying Cai, Lili Wang, Baoyu Shan, Tianqi Hu, Ms Yang Shen, and Zhuo Meng.

All the study participants, and

The National Health and Medical Research Council of Australia

Journal publication

Thank you

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Effect of Salt Substitute on Cardiovascular Events and Death

B. Neal, Y. Wu, X. Feng, R. Zhang, Y. Zhang, J. Shi,* J. Zhang, M. Tian, L. Huang, Z. Li, Y. Yu, Y. Zhao, B. Zhou, J. Sun, Y. Liu, X. Yin, Z. Hao, J. Yu, K.-C. Li, X. Zhang, P. Duan, F. Wang, B. Ma, W. Shi, G.L. Di Tanna, S. Stepien, S. Shan, S. Pearson, N. Li, L.L. Yan, D. Labarthe, and P. Elliott

Better treatments. Better care. Healthier societies.

Effects of reduced-sodium, added-potassium salt substitute on stroke – the salt substitute and stroke study (SSaSS)

Professor Bruce Neal

Executive Director The George Institute, Australia

bneal@georgeinstitute.org.au

