

Pragmatic Trials of Branded Pharmaceuticals: Challenges and Opportunities

NIH Collaboratory Grand Rounds July 19, 2024

Deborah J. Wexler, MD, MSc Brendan M. Everett, MD, MPH Massachusetts General Hospital and Brigham and Women's Hospital Harvard Medical School

Dualities of Interest

- Dr. Everett has received investigator-initiated support from the Patient Centered Outcomes Research Institute (PCORI), NHLBI, American Heart Association, Novartis, and Novo Nordisk and has served as consultant to the American Heart Association (Circulation), Eli Lilly and Company, Ipsen Pharma, Janssen Pharmaceuticals, Kowa Pharmaceuticals, Novo Nordisk, Roche Diagnostics, and has royalty income from UpToDate
- Dr. Wexler has received investigator-initiated support from the Patient Centered Outcomes Research Institute (PCORI) and NIDDK. She has served on data monitoring committees for Novo Nordisk. She has editorial income from Elsevier and royalty income from UpToDate.

Outline

- A pragmatic question at the crux of the cardiac-kidney-metabolic health axis
- The PRECIDENTD Trial
- Lessons from the PRECIDENTD feasibility phase
 - Preliminary findings from the feasibility phase
 - Implications for pragmatic trials and clinical care

Background and rationale

USE OF GLUCOSE-LOWERING MEDICATIONS IN THE MANAGEMENT OF TYPE 2 DIABETES

Diabetes Care. 2022;46(Supplement_1):S140-S157. doi:10.2337/dc23-S009

TO AVOID Therapeutic

VE RI TAS

Which class is better for which patient?

No.
MGH

Patient or provider preference or priority	SGLT2 inhibitor	GLP-1 receptor agonists
MI, stroke, or death	+++	+++
Heart Failure	+++	+
Weight Loss	+	+++
Kidney disease benefit	+++	++
Route	Oral	Subcutaneous or oral
Considerations that may prompt the use of the alternate class	 Severely reduced kidney function Prior amputation History of recurrent genital fungal infection History of DKA History of fracture 	 Persistent nausea History of gastroparesis Active gallbladder disease

Observational Analyses:

SGLT2i vs. GLP-1RA in Patients with Established CVD

Patorno, Glynn, Wexler, Everett, Kim et al. Ann Intern Med. doi:10.7326/M21-0893

Meta-analysis of placebo-controlled randomized trials GLP-1RA: Hazard ratio for MI, stroke, CV Death

	GLP-1 receptor agonist, n/N (%)	Placebo, n/N (%)			Hazard ratio (95% CI)	NNT (95% Cl)	p value
3-point MACE							
ELIXA	400/3034 (13%)	392/3034 (13%)		_	1.02 (0.89–1.17)		0.78
LEADER	608/4668 (13%)	694/4672 (15%)			0.87 (0.78–0.97)		0.01
SUSTAIN-6	108/1648 (7%)	146/1649 (9%)			0.74 (0.58–0.95)		0.016
EXSCEL	839/7356 (11%)	905/7396 (12%)	-		0.91 (0.83–1.00)		0.061
Harmony Outcomes	338/4731 (7%)	428/4732 (9%)			0.78 (0.68–0.90)		0.0006
REWIND	594/4949 (12%)	663/4952 (13%)			0.88 (0.79–0.99)		0.026
PIONEER 6	61/1591 (4%)	76/1592 (5%)			0.79 (0.57–1.11)		0.17
AMPLITUDE-O	189/2717 (7%)	125/1359 (9%)			0.73 (0.58–0.92)		0.0069
Subtotal (l²=44·5%, p=0	0.082)		\diamond		0.86 (0.80-0.93)	65 (45–130)	<0.0001

HR 0.86 (0.80-0.93)

Sattar et al. Lancet Diabetes Endocrinol 2021 9: 653-62

Meta-analysis of placebo-controlled randomized trials SGLT2i: Hazard ratio for MI, stroke, CV Death

Figure 1. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Major Adverse Cardiovascular Events— Composite of Myocardial Infarction, Stroke, or Cardiovascular Death

A Overall MACEs

	Treatment		Placebo				
	No./total No.	Rate/1000 patient-years	No./total No.	Rate/1000 patient-years	Hazard ratio (95% CI)	Favors Favo treatment plac	ors ebo Weight, %
EMPA-REG OUTCOME	490/4687	37.4	282/2333	43.9	0.86 (0.74-0.99)	−●− <u></u> [15.72
CANVAS program	NA/5795	26.9	NA/4347	31.5	0.86 (0.75-0.97)	⊢●┤	20.12
DECLARE-TIMI 58	756/8582	22.6	803/8578	24.2	0.93 (0.84-1.03)	⊢● I	32.02
CREDENCE	217/2202	38.7	269/2199	48.7	0.80 (0.67-0.95)		10.92
VERTIS CV	735/5499	40.0	368/2747	40.3	0.99 (0.88-1.12)	⊢∳⊣	21.23
Fixed-effects model (Q=5	5.22; df = 4; P = .2	27; I ² =23.4%)			0.90 (0.85-0.95)	\blacklozenge	
						0.2 1	7

HR (95% CI)

HR 0.90 (0.85-0.95)

McGuire et al. JAMA Cardiol. 2021;6(2):148-158. doi:10.1001/jamacardio.2020.4511

Inescapable bias hampers observational studies Could pragmatic trials be a possible solution?

- Sources of bias
 - Allocation bias
 - Time-lag bias
- Other issues: short duration on medication (6-8 months)
- One solution?
 - Pragmatic randomized trials
 - The randomization step eliminates bias inherent to observational trials ... while not solving all problems!

GLP-1RA vs. SGLT2i

Funded by PCORI through Phased Large Awards for Comparative Effectiveness Research (PLACER) Mechanism

Feasibility Phase: 1.5 years Full Phase: 5 years

PRECIDENTD Specific Aims

Aim 1: Head-to-head evaluation of SGLT2i versus GLP-1 RA for the the prevention of major adverse cardiovascular and kidney events and death

Aim 2: Compare SGLT2i and GLP-1RA on the burden of adverse events of special interest, measures of global health and treatment satisfaction

Currently in the full study phase after a pilot phase that previously included a combination arm

Original study design – feasibility phase

PRECIDENTD: Full trial study design

*Post-FLOW; final IRB review pending

Intervention

- Random allocation to SGLT2i or GLP-1 RA •

 <u>Site investigator will write a prescription</u> for whichever drug in the assigned class is covered by the patient's pharmacy benefit plan and help start the participant on medication

 Patient fills preferred medication within class through their own pharmacy/insurance

The conversation...

Clinician:

- "There are two new medications recommended for people with ASCVD and type 2 diabetes."
- "Both will reduce your risk of major cardiac events, like heart attack, stroke, and death, and also help lower HbA1c and weight."

Patient:

"Which one should I take? Which one is better for my heart? What would you recommend?"

Clinician:

- "Right now, we don't know which one is better."
- "Would you be willing to help us answer that question?"

1811

Patient, provider, and stakeholder engagement is crucial

- **Engagement strategies**
 - Community Engagement Studios
 - Center for Effective Health
 Communication
 - MEMOTEXT interactive text messaging to assess adherence
- Outstanding team
 - Lindsay Mayberry PhD, Lyndsay Nelson PhD, and team at Vanderbilt

Partnership and engagement: keys to the success of this pragmatic trial

- What will study team do?
 - Recruit
- <u>Randomize</u>
- Prescribe
- Educate the patient and perform initial medication titration
- <u>Communicate</u> with usual diabetes care provider at all clinical touchpoints through the EHR
- Collect outcomes

- What will usual care providers do?
 - Refer patients
 - Collaborate in medication prescribing
 - Attempt to maintain participant on the assigned study medication regimen while adjusting other diabetes medications as needed for safety.

Engagement for recruitment, consistent messaging, usability, process improvement, adherence (MEMOTEXT) and so much more

PRECIDENTD: A key test of pragmatic trials

Patient Identification in a Pragmatic Trial

"Computable Phenotype" for use in PCORnet common data model

- Code adjustment for local data conventions
- "Stale" data typically updated every 3 months or longer
- All patients, regardless of involvement with the health system, are weighted equally
- Not possible to concurrently identify eligible patients when they are in a clinic (e.g., cardiology or primary care)

"EHR screening" model

- Addresses many of these concerns
- Can facilitate "MyChart" or similar direct-topatient messaging
- Requires independent coding and IT resources at each site

Marquis-Gravel G, et al. JAMA Cardiol. 2020 Mar 18. doi: 10.1001/jamacardio.2020.0116

Informed Consent in a Pragmatic Trial

- Obtaining informed consent is time-consuming, challenging, and individualized
 - Nothing about it is pragmatic!
- PRECIDENTD views the study as a partnership with patients and potential study participants
 - In all trials, participants donate their time and energy
 - In PRECIDENTD, they also pay for their study medicine
 - The goal of answering the primary study question must be shared by everyone involved, including study participants
- The study must support the time and effort of the study investigators, coordinators, and participants in order to be successful

Outcome ascertainment in a Pragmatic Trial

- The dream
 - Collect outcomes through PCORnet common data model
 - Pitfalls:
 - Missing data (out-of-network events)
 - Lack of patient-reported outcomes
 - Non PCORnet sites cannot participate
- The reality: Belt-and-suspenders approach
 - PCORnet outcome queries AND
 - Site and patient-reported outcomes through REDCap electronic data capture system, validated through electronic health record review

Lessons from the feasibility phase

Original study design – feasibility phase

Three Major Challenges to Reaching Enrollment Goals

Site payments are not sufficient to support coordinator effort

- Study drug cost
 - \circ Enrollment
 - \circ Adherence
 - $\circ~$ Cost issues may be particularly acute in the combination therapy arm

PRECIDENTD: Full trial study design

*Post-FLOW; final IRB review pending

How did we arrive at this suggested trial modification? Stakeholder feedback (patients, sites, and professional leaders)

- Combination therapy presents unique challenges for a pragmatic trial
 - Cost and adherence
- Ongoing trials may be able to address combination vs. monotherapy through secondary analyses
 - e.g. recently published SMART-C meta-analysis*
- Monotherapy comparison
 - Relevant for primary care physicians and patients
 - No other large trial is testing this question
 - Feasible to answer with 6,000 patients randomized (rather than 9,000)

*Lancet Diabetes Endocrinol 2024 (July 8) https://doi.org/10.1016/S2213-8587(24)00155-4

Pros and cons of feasibility to full phase mechanism

- In theory:
 - Feasibility phase, with limited funding, is designed to demonstrate feasibility while allowing minor modifications for a full trial phase
- In practice:
 - Yes, this is true.
- But:
 - Constrained funding in feasibility phase may hamper growth of the trial
 - The practical challenges of even minor changes in study design in a bureaucratic research environment are real

Feasibility Phase: Baseline Characteristics

	Monotherapy	Dual Therapy	Total
	(N=113)	(N=60)	(N=173)
$\operatorname{Cohort-n(\%)}$			
Primary	37~(32.7%)	21~(35.0%)	58~(33.5%)
Secondary	76~(67.3%)	39~(65.0%)	115~(66.5%)
${\bf Age~Group-~n(\%)}$			
< 65	46~(40.7%)	23~(38.3%)	69~(39.9%)
$\geq to 65$	67~(59.3%)	37~(61.7%)	104~(60.1%)
Age at Screening			
Ν	113~(100.0%)	60~(100.0%)	173~(100.0%)
Median (IQR)	$66\ (62,\ 72)$	$68 \ (62,\ 74.2)$	67 (62, 72)
Weight (lbs)			
Ν	113~(100.0%)	60~(100.0%)	173~(100.0%)
Median (IQR)	$205\ (179,\ 236)$	$200.5\ (173.2,\ 240)$	$204\ (175,\ 237)$
BMI			
Ν	113~(100.0%)	60~(100.0%)	173~(100.0%)
Median (IQR)	$32.1\ (27.6,\ 36.5)$	$32.4\ (27.9,\ 38.1)$	$32.3\ (27.7,\ 36.8)$
$\operatorname{Gender-n}(\%)$			
Male	64~(56.6%)	29~(48.3%)	93~(53.8%)
Female	49~(43.4%)	31~(51.7%)	80~(46.2%)
Non-binary	0	0	0
Other	0	0	0

Feasibility Phase: Baseline self-reported race, ethnicity, education

	Monotherapy	Dual Therapy	Total	
	(N=113)	(N=60)	(N=173)	
Race– $n(\%)$				
Am. Indian/Alaska Native	0	0	0	
Asian	6 (5.4%)	3 (5.0%)	9(5.3%)	
Black/African-American	32(28.8%)	12(20.0%)	44~(25.7%)	
Hawaiian/Pacific Islander	0	0	0	
White/Caucasian	71~(64.0%)	43~(71.7%)	114~(66.7%)	
Multi-Race	0	1~(1.7%)	1~(0.6%)	
Prefer Not to Answer	1~(0.9%)	0	1~(0.6%)	
Unknown	1~(0.9%)	0	1~(0.6%)	
Other	0	1~(1.7%)	1~(0.6%)	
Hi <mark>spanic– n(%)</mark>				
Yes	3(2.7%)	0	3~(1.7%)	
No	105~(92.9%)	59~(98.3%)	164 (94.8%)	
Unknown	4~(3.5%)	1~(1.7%)	5~(2.9%)	
Prefer not to Answer	1 (0.9%)	0	1~(0.6%)	
${\bf Education-n(\%)}$				
< High School Diploma	4 (3.5%)	5~(8.3%)	9~(5.2%)	
High School Diploma/GED	24~(21.2%)	11~(18.3%)	35~(20.2%)	
College Credit/Associate Degree	33~(29.2%)	13~(21.7%)	46~(26.6%)	
Bachelor's Degree	32~(28.3%)	9~(15.0%)	41~(23.7%)	
Graduate Degree	20~(17.7%)	22~(36.7%)	42(24.3%)	

Feasibility Phase: Baseline medical comorbidities

	Monotherapy	Dual Therapy	Total
Medical History	(N=113)	(N=60)	(N=173)
Hospitalized for Heart Failure > 12 months ago	14~(12.4%)	10~(16.7%)	24~(13.9%)
History of Heart Attack	27~(23.9%)	16~(26.7%)	43~(24.9%)
History of Stroke	16~(14.2%)	8~(13.3%)	24~(13.9%)
Blockages of Heart Blood Vessels ¹	53~(46.9%)	28~(46.7%)	81 (46.8%)
Blockages of Blood Vessels in Brain or Neck ²	3~(2.7%)	1~(1.7%)	4~(2.3%)
Blockages of Blood Vessels in Legs ³	5~(4.4%)	2~(3.3%)	7~(4.0%)
$CABG^4$	18~(15.9%)	9~(15.0%)	27~(15.6%)
Atrial Fibrillation	18~(15.9%)	10~(16.7%)	28~(16.2%)
Aortic Stenosis			
Yes	8~(7.1%)	0	8~(4.6%)
No	98~(86.7%)	58~(96.7%)	156~(90.2%)
Unknown	7~(6.2%)	2~(3.3%)	9~(5.2%)
Diabetic Neuropathy	41~(36.3%)	20~(33.3%)	61~(35.3%)
Treated for Diabetic Eye Disease	3~(2.7%)	5~(8.3%)	8~(4.6%)

Feasibility Phase: Baseline diabetes medication use

À
MGH
1811

	Monotherapy	Dual Therapy	Total
	(N=113)	(N=60)	(N=173)
Insulin Use	28~(24.8%)	16~(26.7%)	44~(25.4%)
Metformin	77~(68.1%)	45~(75.0%)	122~(70.5%)
Sulfonylurea or Glinide	21~(18.6%)	11~(18.3%)	32~(18.5%)
DPP-4 Inhibitor	8(7.1%)	5(8.3%)	13~(7.5%)
GLP-1 Receptor Agonists	33~(29.2%)	21~(35.0%)	54(31.2%)
SGLT2 Inhibitors	25~(22.1%)	10~(16.7%)	35~(20.2%)
Other Glucose Lowering Medication	11~(9.7%)	7~(11.7%)	18~(10.4%)
	\sim		\cdot

Feasibility Phase: Baseline cardiac medication use

	Monotherapy	Dual Therapy	Total
	(N=113)	(N=60)	(N=173)
Statins	95 (84.1%)	49 (81.7%)	144 (83.2%)
ACE Inhibitor	39 (34.5%)	20 (33.3%)	59(34.1%)
ARBs	34~(30.1%)	23(38.3%)	57(32.9%)
Thiazide Diuretic	26~(23.0%)	11 (18.3%)	37~(21.4%)
Loop Diuretic	23~(20.4%)	12~(20.0%)	35~(20.2%)
Mineralocorticoid Antagonist	11~(9.7%)	6~(10.0%)	17~(9.8%)
Beta Blocker	55~(48.7%)	30~(50.0%)	85~(49.1%)
Other Blood Pressure Medications	27~(23.9%)	16~(26.7%)	43~(24.9%)
Injectable Cholesterol Medication	8~(7.1%)	5~(8.3%)	13~(7.5%)
Other Lipid Lowering Medications	23~(20.4%)	12~(20.0%)	35~(20.2%)
Aspirin Use	60~(53.1%)	37~(61.7%)	97~(56.1%)
Other Anti-Platelet Drugs	15~(13.3%)	6~(10.0%)	21~(12.1%)
Anticoagulant	16~(14.2%)	13~(21.7%)	29~(16.8%)

Feasibility Phase: Health insurance and affordability

MGH

1811

	Monotherapy	Dual Therapy	Total
	(N=113)	(N=60)	(N=173)
Health Insurance– n(%)	· · · ·	· · · ·	
Yes	112~(99.1%)	60~(100.0%)	172~(99.4%)
No	1 (0.9%)	0	1 (0.6%)
Type of Health Insurance ¹ – $n(\%)$			
Employer/Union	34~(21.5%)	19~(23.8%)	53~(22.3%)
Personally Purchased	15~(9.5%)	9~(11.2%)	24~(10.1%)
Medicare	67~(42.4%)	35~(43.8%)	102~(42.9%)
Medicaid	15~(9.5%)	8~(10.0%)	23~(9.7%)
Other	26~(16.5%)	8~(10.0%)	34~(14.3%)
Missing	1~(0.6%)	1~(1.2%)	2~(0.8%)
Affordability of Medication– n(%)			
Yes	113~(100.0%)	60~(100.0%)	173(100.0%)
No	0	0	0
Unknown	0	0	0

¹ Type of health insurance is not unique and is shown as the top four types of health insurance plus insurance missing, the rest are categorizes as Other

Adherence in a Pragmatic Trial: How many pick up their new study medicine?

- Unpublished outcome data that we cannot share in this forum
- However, rates medication adherence were substantially lower in the combination therapy arm compared to monotherapy arms
 - Expected initial pick-up: 30% lower in combination therapy arm
 - Pick-up rate at 10 weeks: 40% lower in combination therapy arm
 - Pick-up rate at 4 months: 30% lower in combination therapy arm
- Visit adherence decreased along with medication adherence and was lower in the combination therapy arm

Summary

- Comparative effectiveness of SGLT2 inhibitors and GLP-1 receptor agonists for cardiac and kidney outcomes is a major question in cardiac-kidney-metabolic health
- More broadly, comparative effectiveness of on-patent medications is crucial, yet not mandated, with little incentive (and some disincentive) for pharmaceutical companies to participate
- PRECIDENTD will answer this pressing clinical question, and test one approach to evaluating the comparative effectiveness of expensive new therapies

The PRECIDENTD Team

BWH DCC

Robert Glynn, ScD, PhD

Jean MacFadyen

Jeremy Lema-Driscoll

Ligia Flores

Joe Shen

Aerin Thomson

DCRI Analysis core

Schuyler Jones, MD

Brad Hammill, PhD

Rekha Divakaran, Pharm.D.

Darcy Louzao, PhD

Amy Franklin

Vanderbilt Engagement Core

Lindsay Mayberry, PhD

Lyndsay Nelson, PhD

Erin Bergner

Russell Rothman, MD

PCORI

Denise Bonds, MD

Kim Bailey

Rajvi Shah

Laura Esmail

Christine Broderick

Mary Gardner

BWH/MGH CCC

Brendan Everett, MD

Deborah Wexler, MD

Maureen Malloy

Elaine Zaharris

Amy Casarella

Doris Chen

Todd Davison

Meg Perry

Ted Silva

Feasibility Phase Vanguard Clinical sites

Site	PI
Columbia	Jacqueline Lonier, MD
Johns Hopkins	Rita Kalyani, MD
Medical University of South Carolina	Harsha Karanchi, MD
Duke	Schuyler Jones, MD
Vanderbilt	Leslie Maheny, MD
University of Missouri	Camila Manrique- Acevedo, MD
Medical College of Wisconsin	Jake Decker, MD
Essentia	Katie Benziger, MD

Questions and Discussion

Feasibility Phase Enrollment and Baseline Characteristics

1.1 Consort Diagram for Feasibility Stage

SGLT2i, GLP-1RA, or the combination in patients without CVD MACE outcome

- Nested case-control data
 from England and Wales
 - Calculated odds ratio for 3point MACE associated with SGLT2i + GLP-1RA, SGLT2i, or GLP-1 RA regimens compared to other regimens
 - There were <u>53</u> total events in the combination SGLT2i/GLP-1 RA regimen group

1811

Randomly allocated GLP-1 RA on top of baseline SGLT2i: Data from AMPLITUDE-0

- Randomly allocated efpeglenitide had similar benefits regardless of baseline SGLT2i use
- Population had about 90% prevalence of CVD at baseline
- Similar benefits observed for MACE, expanded MACE, renal composite, MACE + death, and HHF

Lam et al. *Circulation*. 2022;145:565–574. DOI: 10.1161/CIRCULATIONAHA.121.057934

43

Currently, SGLT2 inhibitors and GLP-1 receptor agonists are underutilized in patients at high risk

- **MGH** 1811
- Fewer than one in three patients with ASCVD, CKD, or heart failure are currently prescribed these medications
- Barriers
 - Lack of familiarity with medication
 - Need for education / titration
 - Cost to patient
 - Prior authorization

- Appropriate use is improving with time
 - Insurance coverage improving
- Study teams will address barriers
 - Teach patients
 - Pre-screen and troubleshoot for cost issues
 - Use systems to reduce burden of prior authorization