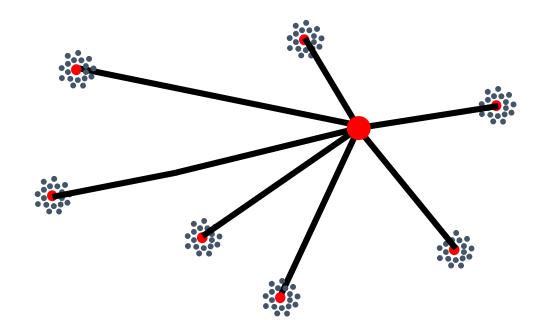
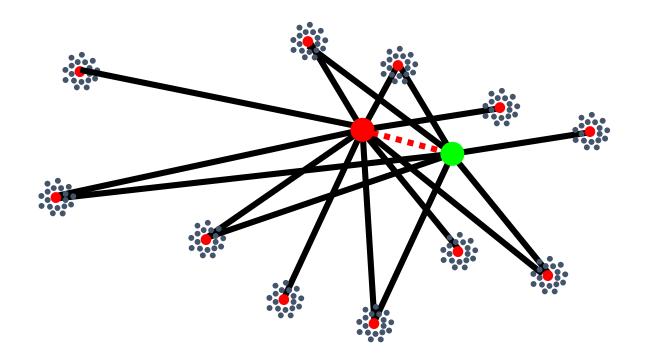

National COVID Cohort Collaborative (N3C) Data Exchange For Emerging/Novel Diseases (DEFEND)

> Internal Team Rob Star, NIDDK Ken Gersing, NCATS Stephen Hewitt, LP, NCI Michael Kurilla, NCATS Sam Michael, NCATS Joni Rutter, NCATS

External Imaging Advisors

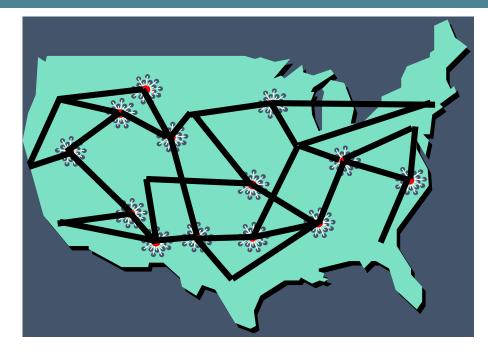

Fred Prior, U of Arkansas for Medical Sciences Joel Saltz, SUNY/Stony Brook

Re-engineering Clinical Research



Cross cutting: Harmonization, Training

Typical NIH Network Academic Health Center Sites & Data Coordinating Center



Interoperable Networks Share Sites and Data

Integration of Clinical Research Networks

- Link existing networks so clinical studies and trials can be conducted more effectively
- Ensure that patients, physicians, and scientists form true "Communities of Research"

Re-engineering the Clinical Research Enterprise

Plan and start a few demonstration networks Simplify complex regulatory systems – demonstration projects Plan for networks in place for all institutes	Funding mechanism to sustain national system through consensus of all constituents ("1% solution") Simplified regulatory system in place for networks	National Clinical Research System creates effectiveness data that moves rapidly into the community AND data on outcomes and quality of care; sustained efficient infrastructure to rapidly initiate large clinical trials; scientific information for patients, families, advocacy groups
Establish repositories of biological specimens and standards for collection Standardize nomenclature, data standards, core data, forms for most major diseases Start a library of these elements shared between institutes and NLM Develop efficient network administration infrastructure at NIH Develop standards for capturing images for research	Data standards shared across NIH institutes Funding mechanisms evaluated to determine which are most efficient	ONE medical nomenclature with national data standards (agreed to by NIH, CMS, FDA, DOD, CDC) Data standards updated 'in real time" through networks National repository of images and samples Critical national "problem list" Most efficient network funding mechanisms in place across NIH
Create NIH standards to provide "safe haven" for clinical research Inventory and evaluate existing public- private partnerships, networks, CR institutions, and regulatory systems Establish FORUM(S) of <u>all</u> stakeholders Establish standards for and pilot creation of a National Clinical Research Corps Demonstration/planning grants to enhance/evaluate/develop model networks	NIH standards for safe haven in place Regulations and ethics harmonized with FDA, CMS Public private partnership mechanisms in place 100,000 members of certified "Clinical Research Corps" Standards shared across NIH	Participation in research is a professional standard (taught in all health professions schools) Study, evaluation and training regarding clinical research a part of every medical school, nursing school, pharmacy school Clinical research practices documented and updated regularly to maintain safe haven Networks provide detailed training about network specific issues
1-3 years	4-7 years Time	8-10 years

Increasing Level of Difficu

2002-3

Re-engineering the Clinical Research Enterprise

Culty	demonstration pro	regulatory systems –	Funding mechanism to sustain national system through consensus of all constituents ("1% solution") Simplified regulatory system in place for networks	National Clinical Research System creates effectiveness data that moves rapidly into the community AND data on outcomes and quality of care; sustained efficient infrastructure to rapidly initiate large clinical trials; scientific information for patients, families, advocacy groups		
Increasing Level of Difficul	Establish repositor specimens and sta	ries of biological andards for collection	Data standards shared across NIH institutes	ONE medical nomen data standards (acre		
	Standardize nc core data, form Start a library c between institu Develop efficie infrastructure a Develop standa research	effectiveness da community ANE care; sustained initiate large cli	I Research System creates ata that moves rapidly into t O data on outcomes and qua efficient infrastructure to ra nical trials; scientific informa	ality of pidly	d 'in real time" mages and samples em list" funding mechanisms	
	private partnership institutions, and re Establish FORUM Establish standard a National Clinical Demonstration/pla	buate existing public- bs, networks, CR igulatory systems (S) of <u>all</u> stakeholders is for and pilot creation of Research Corps	Public private partnership mechanisms in place 100,000 members of certified "Clinical Research Corps" Standards shared across NIH	Study, evaluation an clinical research a pa school, nursing schoo Clinical research prac and updated regulary haven Networks provide det network specific issue	Int of every medical bl, pharmacy school ctices documented y to maintain safe railed training about	
I	1-	3 years	4-7 years	•	8-10 years	

Time

2002-3

Re-engineering the Clinical Research Enterprise

SERVICE-

Difficulty	Plan and start a few demonstration networks Simplify complex regulatory systems – demonstration projects Plan for networks in place for all institutes	Funding mechanism to sustain national system through consensus of all constituents ("1% solution") Simplified regulatory system in place for networks	rapidly into the com outcomes and quali	eness data that moves community AND data on quality of care; sustained ructure to rapidly initiate als; scientific patients, families,	
of Di	Establish repositories of biological specimens and standards for collection Standardize nc	Data standards shared across NIH institutes	ONE medical nomenclature with nationa data standards (agreed to by NIH, CMS)		
Increasing Level of	core data, form Start a library c between institu Develop efficie infrastructure a Develop standa research National Clinic effectiveness community Al of care; sustail rapidly initiate l	cal Research System creates data that moves rapidly in ND data on outcomes and ned efficient infrastructur arge clinical trials; scientifi	l quality re to c	ed 'in real time" mages and samples em list" funding mechanisms	
Ir	Create NIH sta haven" for clini Inventory and e private partner: institutions, and regulatory systems Establish FORUM(S) of <u>all</u> stakeholders Establish standards for and pilot creation of	place 100,000 members of certified "Clinical Research Corps"	OCACY clinical research a pa school, nursing schoo Clinical research prac	ol, pharmacy school	
	a National Clinical Research Corps Demonstration/planning grants to enhance/evaluate/develop model networks	Standards shared across NIH	and updated regularly haven Networks provide det network specific issue	/ to maintain safe ailed training about	
	1-3 years	4-7 years	8-10 years		

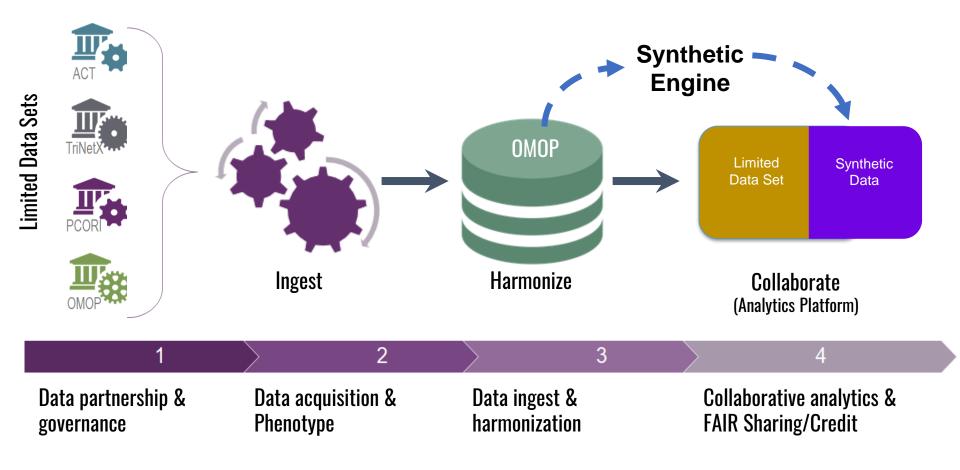
Time

National COVID Cohort Collaborative (N3C)

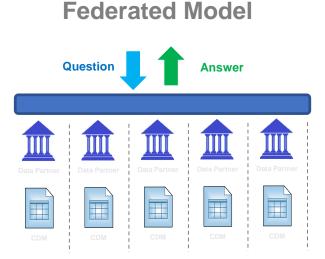
7/2020

Goals – Version 2.0

Rapidly collect and aggregate clinical, lab, and imaging **data** from **hospitals**, *health plans, and CMS* at the **peak of the pandemic** and as it **evolves** Provide a **longitudinal dataset** to understand acute **hospital** and **recovery** phases Understand **pathophysiology** of disease Support **clinical trials** – identify patients who might wish to participate in trials


Develop a **robust, flexible infrastructure** to enable rapid response to COVID-

19 and the next emerging threats


Speed is critical; leverage existing infrastructure; poised to collect data immediately Analytics platform should be non-proscriptive and easily reconfigurable Must be able to interconnect to numerous data streams and analytic resources

N3C Overview

Federated versus Centralized Analytical Models: Characteristics

Is **drug X** beneficial to covid-19 patients? Does **Disease Y** impair course? Does an **income > \$50,000** per year improve outcomes? Centralized Model

What **drugs** help covid-19 patients, and which hinder? What **Diagnoses** impact outcome? What **Social Determinants** impact course and outcome?

N3C Community Workstreams

NCATS N3C website: <u>ncats.nih.gov/n3c</u> CD2H N3C website: <u>covid.cd2h.org</u> Onboarding to N3C: <u>bit.ly/cd2h-onboarding-form</u>

National COVID Cohort Collaborative

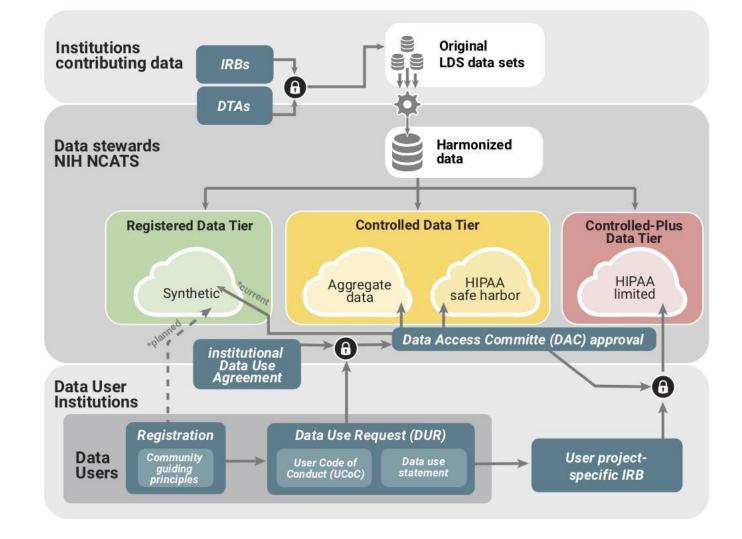
N3C Statistics

7/8/2020	CTSA	85%	
48 DTAs executed	Organizations		
27 IRB protocols approved (23 reliance, 4 local)			
24 Regulatory complete (both DTA and IRB)	N3C Organizations	105	
36 Met with Data Acquisition Group			
9 Deposited data:			
4 - PCORI	N3C Individual	800	
3 - ОМОР	Members	800	
1 - TriNetX			
1 - ACT			

National

Cohort Collaborative

Goal of the Data Use Agreement is broad access:

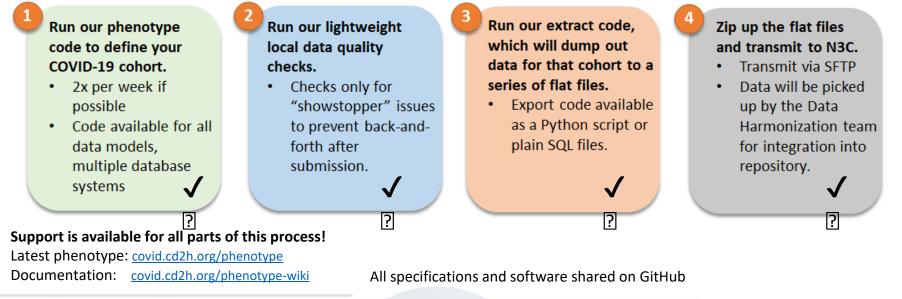

- COVID-Related research only
- Open platform to all Credentialed researchers
- Security: Activities in the N3C Enclave are recorded and can be audited
- Disclosure of research results to the N3C Enclave for the public good
- Analytics provenance
- Contributor Attribution tracking
- No download of data

National COVID Cohort Collaborative

Regulatory overview

Data Tiers

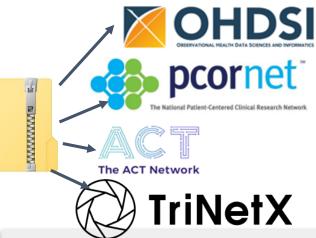
Access Level	Registered	Contr	olled	Controlled-Plus	
Data Type	Synthetic Data (pending pilot)	Aggregate Data (i.e., counts)	HIPAA Safe Harbor	HIPAA Limited	
Description	Computational data derivative that statistically resembles the original data	Summary statistics representing 10 or		Data that may contain 3 direct identifiers per HIPAA rules (dates, full zip code, and any age)	
Downloadable data	Planned: pending validation & organizational agreement	Downloadable query results	No	No	
Custom software	Yes	Yes - on downloaded query results	Yes with DAC approval	Yes - with independent IRB and DAC approval	



Phenotype & Acquisition

Dual-purpose workstream:

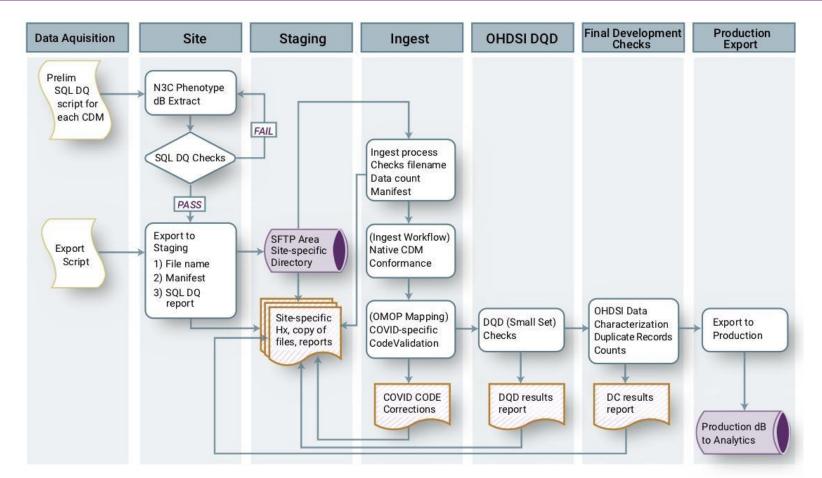
- 1. Work with the community to write and maintain a computable phenotype for COVID-19.
- 2. Write and maintain a series of scripts to execute the computable phenotype in each of four common data models (CDMs): OMOP, i2b2/ACT, PCORnet, and TriNetX.


What does it look like to run our process locally?

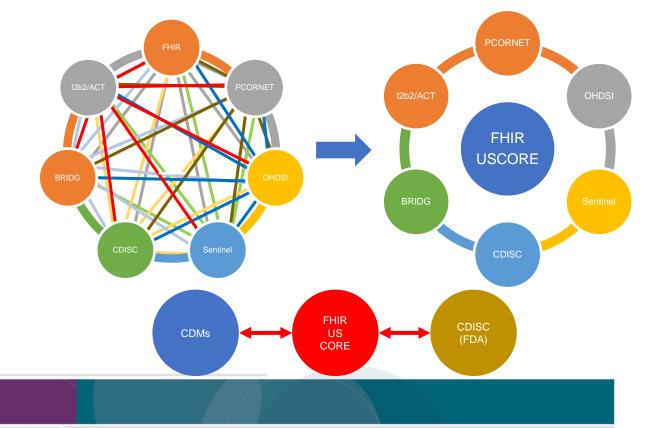
Common Data Model Harmonization

	Verification			Verification Validation				Total				
	Pass	Fail	Total	% Pass	Pass	Fail	Total	% Pass	Pass	Fail	Total	% Pass
Plausibility	159	21	180	88%	283	0	283	100%	442	21	463	95%
Conformance	637	34	671	95%	104	0	104	100%	741	34	775	96%
Completeness	369	17	386	96%	5	10	15	33%	374	27	401	93%
Total	1165	72	1237	94%	392	10	402	<mark>98%</mark>	1557	82	1639	95%
Data Quality Dashboard (shared with site)												

?

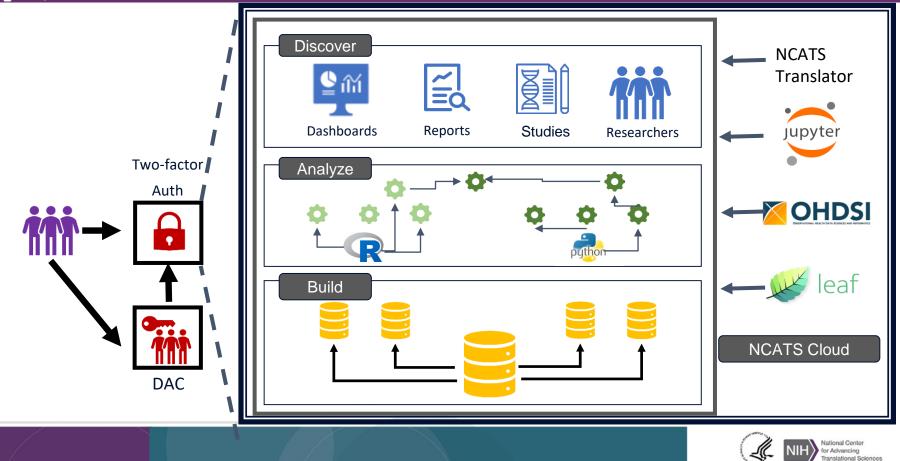

First Stage Ingestion

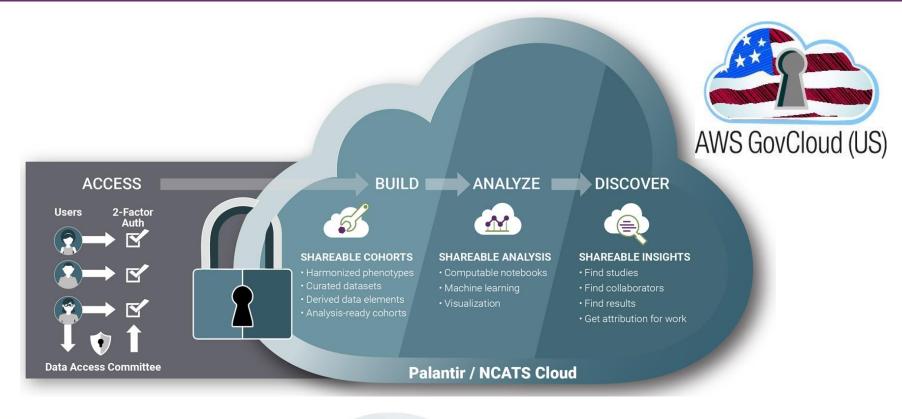
- Unpack Zip'ed csv Files. Check data manifests ✓
- Reconstitute into native CDM formats



Data Quality Gates

NCATS, FDA, and NCI working together on CDM harmonization

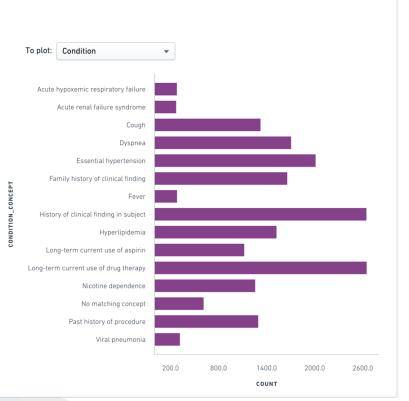

Harmonization of Common data models, (PCORMET, Sentinel, OMOP, ACT) FHIR / USCORE and CDISC Meta data initiative makes the meaning of data publicly available and reusable in **human and machine-readable**



Collaborative Analytics - N3C Secure Data Enclave

Collaborative Analytics - N3C Secure Data Enclave

Clinical Scenarios

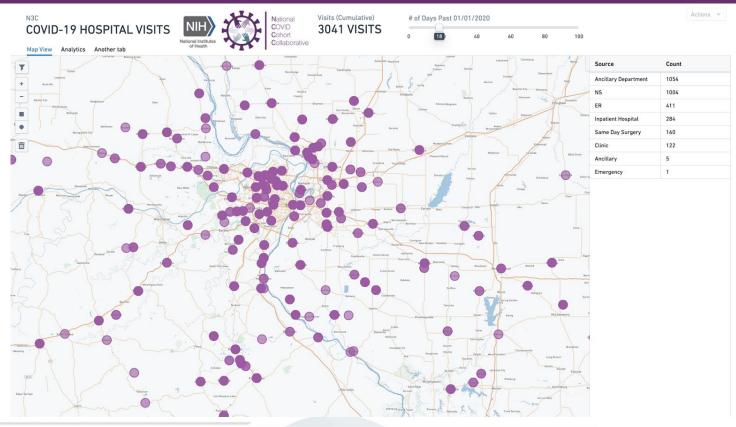


Cohort Characterisation

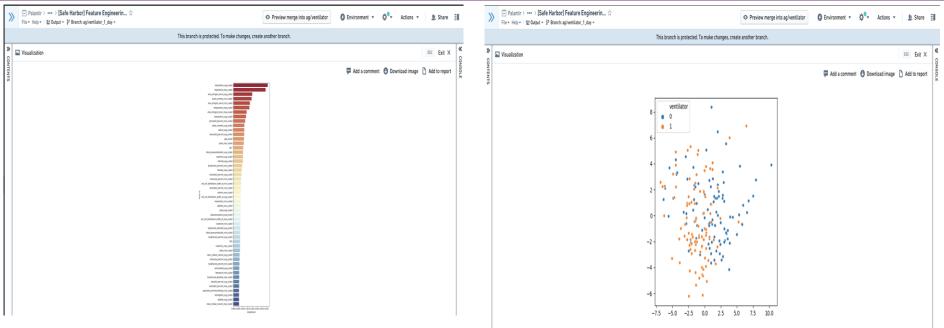
Cohort characteristics

Summary statistics for WUSTL patients

	COVID (N=1161)	Non-COVID (N=5904)	Overall (N=7065)
Gender			
Male	1059	7022	2141
Female	1091	8069	9160
Null		3	3
Age			
0 - 17	46	2095	2141
18 - 29	303	2043	2346
30 - 49	616	3638	4254
50 - 64	584	3488	4072
65+	523	3498	4021
Race			
White	614	8110	8724
Asian	127	1225	1352
American Indian or Alaska Native	5	27	32
Black or African American	1083	3693	4776
Other Pacific Islander	1	7	8
Null	306	1958	2264
Ethnicity			
Not Hispanic or Latino	1926	13910	15836
Hispanic or Latino	165	984	1149
Unknown	59	200	259



Time/Space Vector - Live Example



National COVID Cohort Collaborative

Predictive Modeling: Risk of Ventilation and AKI

Random forest model trained on 200 COVID-19 patients, 100 of whom required ventilation, and 100 did not. It performs well, with an AUC of 0.85. Shown are the top features in the model predicting ventilator usage as an outcome.

Using these features, we are able to see separation in a PCA plot between the ventilator population in orange and the non-ventilator population in blue.

Data Sharing Initiative: Synthetic Data

*Computer Derived Synthetic Data: Validation of Sepsis Prediction

Public / Private Partnership

- Wash University
- Microsoft
- **MDClone**

	Trained on Tested on		Trained on sy Tested on				
	Accuracy	0.925	0.911				
Train	Precision	0.95	0.925				
Train	Recall	0.817	0.799				
	F-Score	0.879	0.858				
10 fold	Accuracy	0.839	0.816				
10-fold	Precision	0.802	0.754				
Cross-	Recall	0.704	0.666				
validation	F-Score	0.745	0.704				
	Accuracy	0.846	0.841				
Teet	Precision	0.836	0.845				
Test	Recall	0.671	0.645				
	F-Score	0.745	0.731				
ML model performance (random forest) *Wash U. Philip Payne							

IVIL model performance (random forest)

National

Collaborative

Partners, Teams, Collaborators

NCATS Chris Austin Ioni Rutter Mike Kurilla **Clare Schmitt** Ken Gersing Xinzhi Zhang Frica Rosemond Sam Bozzette Lili Portilla Chris Dillon Penny Burgoon Emilv Marti Meredith Temple-O'Connor Sam Jonson

NIH & HHS Partners NCI Janelle Cortner

Christine Cutillo

Nicole Garbarini

Stephen Hewitt Denise Warzel

FDA Mitra Rocca Scott Gideon Wei Chen

NIDDK Robert Star

NIGMS Ming Lee

NCATS ITRB Sam Michael Mariam Deacy Gary Berkson Josephine Kennedy Usman Sheikh Mark Backus Nam Ngo

Amit Virakatmath Keats Kirsch Sulochana Nunna Rafael Fuentes Reid Simon Biju Mathew Tim Mierzwa

Ke Wang Kalle Virtaneva

CD2H OHSU/OSU

Melissa Haendel Anita Walden Julie McMurry Moni Munoz-Torres Andrea Volz Connor Cook Racquel Dietz Andrew Neumann Rich Lorimor

Sage Bionetworks Justin Guinnev

Justin Guinne James Eddy

U of Iowa: Dave Eichmann Alexis Graves

Northwestern: Kristi Holmes Justin Starren

Lisa O'Keefe Washington U. Philip Payne

Albert Lai Tom Dillon

CD2H

U. Of Washington Adam Wilcox Liz Zampino

Johns Hopkins U Chris Chute Tricia Francis

Jax Labs Peter Robinson

Scripps Chunlei Wu

Teams

Governance Sage Bionetworks John Wilbanks Christine Suver

Data Harmonization JHU

Davera Gabriel Stephanie Hong Harold Lehmann Tanner Zhang Richard Zhu

SAMVIT

Smita Hastak Charles Yaghmour

NCATS

Raju Hemadri Nancy Nurthen Sai Manjula

Adeptia Sandeep Naredla

Teams Phenotype & Acquisition Emily Pfaff, UNC

ACT

Michele Morris, Pitt on Shyam Visweswaran, Pitt Shawn Murphy HRD

OMOP

Kristin Kostka, IQVIA Karthik Natarajan, Columbia Clare Blacketer JNJ

PCORI

Kellie Walters, UNC Robert Bradford, UNC Marshall Clark, UNC Adam Lee, UNC Evan Colmenares, UNC

TriNetX Matvey Palchuk Lora Lingrey

Teams Analytics

Warren Kibbe, Duke Heidi Sprait, UTMB Tell Bennett, U of CO Andrew Williams, Tufts Joel Saltz, SBU Janos Hajagos, SBU Richard Moffitt, SBU Tahsin Kurc, SBU

Palantir

Nabeel Qureshi Andrew Girvin Amin Manna

Synthetic Data

Regenstrief Peter Embi

MDClone Daniel Blumenthal Hovav Dror Luz Erez Josh Rubel Microsoft Allison T Rodriguez

Kenji Takeda

Thank you!

N3C 2.0: Key Focus Areas

Patient-focused

- Descriptive
 - Epidemiology (in non-hospitalized and hospitalized people)
 - Disparities (racial, ethnic, SES) identification of risk; spread through communities
 - Disease course of hospitalized disease (subgroups)
 - Drugs what tried, multiple drugs, association with outcomes
- Pathophysiology (from routinely collected data)
 - Causes of disease (lung injury, hypoxia, cytokine storm, thrombosis, cardiac, renal, etc), and subgroups
 - Which patients with Negative COVID test have COVID19 disease (false negative)?
- Predictors (supervised AI)
 - Predictors of hospitalization, prolonged hospitalization, mortality
 - Scoring systems for intervention (ventilation, dialysis)
 - How does imaging influence subgroups and predictions
- Special populations (subgroups; Latent class analysis; unsupervised AI)
 - Do poorly, different pathophys, respond differently to treatments, etc.
- Long term sequala (Post COVI19 syndromes: weakness, lung, brain, heart, kidney)

System-focused

- Hospital responses to COVID
- Effect of COVID on hospitals
- Economics

Patient Portal: Future studies, Track Recovery

Patient autonomy

- Opt in for future data synch (to show to other care givers)
- Opt in to get information about related clinical trials
- Once enrolled in a study, can Opt in to synch information for research studies
- Opt in to share information back

Track recovery

- Overall: how do you feel?
- Degree of return to usual activities (Physical, Mental)
- Degree of recovery to pre-baseline state of health
 - Subscales (strength, lung, ADL)
- Major symptoms
 - Smell, Breathing (SONG COVID scale); Cough
 - Pain (where), Thinking, Weakness,

Green button: Synergize Care and Research