

1

Emulating randomized clinical trials with non-randomized real-world evidence studies Results from the RCT DUPLICATE¹ initiative

Shirley V Wang, PhD, Sebastian Schneeweiss, MD, ScD, and the RCT-DUPLICATE Initiative

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine Brigham and Women's Hospital, Harvard Medical School, Boston

¹ Randomized Controlled Trials Duplicated Using Prospective Longitudinal Insurance Claims: Applying Techniques of Epidemiology

2023 Harvard / Brigham Division of Pharmacoepidemiology

This study was funded by FDA under contracts HHSF223201710186C and HHSF223201710146C

Disclosures

Dr. Schneeweiss

- PI, Sentinel Innovation Center (FDA)
- Co-Chair, Mass General Brigham Center for Integrated Healthcare Data Research
- PI of grants and contracts from NIH, AHRQ, PCORI, FDA, IMI, Arnold Foundation
- Investigator of research grants awarded to BWH by Boehringer Ingelheim, UCB
- Consulting fees from Aetion, Inc. (incl. equity)

Dr. Wang

• Supported by grants from FDA Sentinel, NHLBI, NIA, NICHD

Key publications on our rationale, methodology and results

When and How Can Real World Data Analyses Substitute for Randomized Controlled Trials?

Jessica M. Franklin¹ and Sebastian Schneeweiss¹

Nonrandomized Real-World Evidence to Support Regulatory Decision Making: Process for a Randomized Trial Replication Project

Jessica M. Franklin^{1,*} ^(D), Ajinkya Pawar¹ ^(D), David Martin², Robert J. Glynn¹, Mark Levenson³, Robert Temple⁴ and Sebastian Schneeweiss¹ ^(D)

Circulation

ORIGINAL RESEARCH ARTICLE

Emulating Randomized Clinical Trials With Nonrandomized Real-World Evidence Studies

First Results From the RCT DUPLICATE Initiative

Jessica M. Franklin[®], PhD Elisabetta Patorno[®], MD, DrPH Rishi J. Desai[®], MS, PhD Robert J. Glynn, PhD, ScD David Martin, MD, MPH Kenneth Quinto, MD, MPH Ajinkya Pawar[®], PhD Lily G. Bessette, BS Hemin Lee, MD, MPH Elizabeth M. Garry[®], PhD Nileesa Gautam, BS Sebastian Schneeweiss, MD, ScD Emulation Differences vs. Biases When Calibrating Real-World Evidence Findings Against Randomized Controlled Trials

Jessica M. Franklin^{1,*}, Robert J. Glynn¹, Samy Suissa² and Sebastian Schneeweiss¹

This Issue Views 4,512 | Citations 0 | Altmetric 669

Original Investigation

April 25, 2023

Emulation of Randomized Clinical Trials With Nonrandomized Database Analyses Results of 32 Clinical Trials

Shirley V. Wang, PhD, ScM¹; Sebastian Schneeweiss, MD, ScD¹; and the RCT-DUPLICATE Initiative

\gg Author Affiliations

JAMA. 2023;329(16):1376-1385. doi:10.1001/jama.2023.4221

RCT-DUPLICATE: A demonstration project

A family of studies aimed to understand and improve the validity of RWE studies for regulatory decision making

4

1	2	3
Emulate 30 RCTs and predict 7 RCTs considered by FDA	Test a process with FDA to evaluate RWE studies	Factors that predict replication success, causal estimates
Learnings: Had there been a similarly designed RWE study instead of an RCT would we have come to the same decision?	Learnings: How to conduct transparent, reproducible RWE studies and enable regulators to re-analyze data?	Learnings: Identify factors that predictably increase validity of RWE studies.

2022 Harvard Medical / Brigham Division of Pharmacoepidemiology

Designing a database study to mimic a hypothetical trial Iterate until data and design are fit-for-purpose for relevant question

Emulation of actual RCTs to use RCT results as reference standard

Hypothetical target trial \approx Actual published trial

2022 Harvard Medical / Brigham Division of Pharmacoepidemiology

Emulation differences vs Bias: Are we asking a different question?

Emulation Differences

Differences between RCT and RWE

Population

- Inclusion-exclusion
- Run-in periods with subject selection

Treatment strategy

- Loading dose, step-up therapy, allowable co-medication
- Placebo

Outcome ascertainment

- Measurement definition
- Primary vs. secondary data collection

Follow up

- Time-varying hazard
- Measures to maximize adherence

Bias

Differences between RWE treatment arms

Confounding

 Un- or mis-measured outcome predictors

Outcome ascertainment

- Differential surveillance
- Misclassification

Follow up

- Differential duration
- Informative censoring

Emulation Differences vs. Biases When Calibrating Real-World Evidence Findings Against Randomized Controlled Trials

Jessica M. Franklin^{1,*}, Robert J. Glynn¹, Samy Suissa² and Sebastian Schneeweiss¹

Trials 1 - 11*

麗:頭:頭
× A /

	Trial name	RCT	RCT RWE ¹ Adjusted Unadjusted		Std. Diff.	Agreement	(emi	Close ulation?
ſ	LEADER	0.87 (0.78, 0.97)	0.82 (0.76, 0.87)	0.57 (0.54, 0.61)	0.90	RA/EA/SD		Υ
	DECLARE	0.83 (0.73, 0.95)	0.69 (0.59, 0.81)	0.47 (0.41, 0.53)	1.76	RA/-/SD		Ν
(0)	EMPA-REG	0.86 (0.74, 0.99)	0.83 (0.73, 0.95)	0.63 (0.57, 0.70)	0.35	RA/EA/SD		Υ
etes	CANVAS	0.86 (0.75, 0.97)	0.77 (0.70, 0.85)	0.58 (0.54, 0.62)	1.34	RA/EA/SD		Υ
lab	CARMELINA	1.02 (0.89, 1.17)	0.90 (0.84, 0.96)	0.90 (0.86, 0.95)	1.61	-/EA/SD		Ν
	TECOS	0.98 (0.88, 1.09)	0.89 (0.86, 0.91)	0.81 (0.79, 0.84)	1.71	-/EA/SD		Ν
	SAVOR-TIMI	1.00 (0.89, 1.12)	0.81 (0.76, 0.86)	0.65 (0.62, 0.69)	3.16	-/-/-		Ν
	LEAD2	0.00 (-0.20, 0.20)	0.05 (0.11, 0.22)	0.01 (0.11, 0.13)	-0.37	RA/EA/SD		Υ
) eet	TRITON-TIMI	0.81 (0.73, 0.90)	0.88 (0.79, 0.97)	0.70 (0.65, 0.76)	-1.11	RA/EA/SD		Ν
Pat	PLATO	0.84 (0.77, 0.92)	0.92 (0.83, 1.02)	0.84 (0.78, 0.91)	-1.31	-/EA/SD		Ν
J	ISAR-REACT5	1.36 (1.09, 1.70)	n/a²	n/a²	n/a²	n/a²		Ν

1) Pooled estimate across databases

2) Chi-square test indicated that results were heterogeneous by database, therefore results were not pooled

* Close emulation refers to trials where there were few emulation challenges

RA = regulatory agreement (point est and CI on same side of null); EA = estimate agreement (RWE estimate in CI of RCT); SD = std diff agreement ($\leq \leq 2$)

Trials 12 - 22*

	Trial name	RCT	RWE	1	Std. Diff.	Agreement	(Close
			Adjusted	Unadjusted			em	ulation?
tion	ARISTOTLE	0.79 (0.66, 0.95)	0.68 (0.61, 0.76)	0.66 (0.62, 0.71)	1.36	RA/EA/SD		Y
vtria illat	RE-LY	0.66 (0.53, 0.82)	0.73 (0.60, 0.90)	0.67 (0.58, 0.78)	-0.66	RA/EA/SD		Y
Fibr	ROCKET-AF	0.79 (0.66, 0.96)	0.70 (0.62, 0.80)	0.76 (0.69, 0.84)	1.00	RA/EA/SD		Y
	EINSTEIN-DVT	0.68 (0.44, 1.04)	0.75 (0.62, 0.90)	0.85 (0.76, 0.95)	-0.42	-/EA/SD		Y
	EINSTEIN-PE	1.12 (0.75, 1.68)	0.67 (0.55, 0.80)	0.73 (0.64, 0.83)	2.28	-/-/-		Υ
E –	RE-COVER II	1.08 (0.64, 1.80)	1.15 (0.74, 1.78)	1.48 (1.09, 2.00)	-0.18	RA/EA/SD		Y
_	AMPLIFY	0.84 (0.60, 1.18)	0.81 (0.54, 1.23)	0.64 (0.50, 0.82)	0.13	RA/EA/SD		Y
Ę	RECORD1	0.25 (0.14, 0.47)	0.17 (0.10, 0.29)	0.25 (0.18, 0.34)	0.63	RA/EA/SD		Y
nsic	TRANSCEND	0.92 (0.81, 1.05)	0.88 (0.81, 0.96)	0.80 (0.74, 0.85)	0.55	-/EA/SD		Y
erte	ON-TARGET	1.01 (0.94, 1.09)	0.83 (0.77, 0.90)	0.68 (0.64, 0.72)	3.46	-/-/-		Υ
Hype	 Pooled estimate acros Chi-square test indica 	ss databases ted that results were heterogene	ous by database, therefore res	ults were not pooled				

* Close emulation refers to trials where there were few emulation challenges

RA = regulatory agreement (point est and CI on same side of null); EA = estimate agreement (RWE estimate in CI of RCT); SD = std diff agreement (≤ 2)

Trials 23 - 30*

33	Trial name	RCT	RWE	1	Std. Diff.	Agreement	Close	
			Adjusted	Unadjusted			emulation?	
	HORIZON-PIVOTAL	0.59 (0.42, 0.83)	0.72 (0.55, 0.94)	1.08 (0.86, 1.35)	-0.90	RA/EA/SD	N	
Osteoporosis	VERO	0.44 (0.29, 0.68)	n/a²	n/a²	n/a²	n/a²	N	
Chronic Kidney	DAPA-CKD	0.61 (0.51, 0.72)	0.80 (0.52, 1.26)	0.41 (0.29, 0.58)	-1.10	-/-/SD	N	
Heart Failure	PARADIGM-HF	0.80 (0.73, 0.87)	1.02 (0.91, 1.14)	0.95 (0.90, 1.02)	-3.42	-/-/-	N	
Acthma	P04334	0.56 (0.44, 0.72)	0.78 (0.62, 0.97)	0.87 (0.76, 0.99)	-1.95	RA/-/SD	N	
Astrinia 1	D5896	1.07 (0.70, 1.65)	1.38 (0.90, 2.13)	1.41 (1.00, 1.98)	-0.81	RA/EA/SD	N	
ſ	IMPACT	0.85 (0.80, 0.90)	1.13 (1.04, 1.23)	1.22 (1.15, 1.30)	-5.46	-/-/-	N	
COPD -	POET-COPD	0.83 (0.77, 0.90)	1.02 (0.93, 1.12)	1.05 (0.99, 1.12)	-3.27	-/-/-	N	
L	INSPIRE	0.97 (0.84, 1.12)	0.93 (0.90, 0.96)	0.83 (0.81, 0.85)	0.56	RA/EA/SD	N	

1) Pooled estimate across databases

2) Chi-square test indicated that results were heterogeneous by database, therefore results were not pooled

* Close emulation refers to trials where there were few emulation challenges

RA = regulatory agreement (point est and CI on same side of null); EA = estimate agreement (RWE estimate in CI of RCT); SD = std diff agreement (≤ 2)

Prediction of ongoing Phase IV RCTs (2 of 7)

	Trial name RCT		R	WE ¹	Std. Diff. Agreement		Close	
			Adjusted	Unadjusted			emulation?	
Diabetes	CAROLINA ²	0.98 (0.84, 1.14)	0.91 (0.79, 1.05)	0.92 (0.83-1.01)	0.70	RA/EA/SD	Y	
Prostate	PRONOUNCE ³	1.28 (0.59, 2.79)	1.35 (0.94, 1.93)	1.70 (1.30, 2.21)	-0.12	RA/EA/SD	Y	
cancer								

1) Pooled estimate across databases

2) Patorno E, Schneeweiss S, Gopalakrishnan C, Martin D, Franklin JM. Using real-world data to predict findings of an ongoing phase IV cardiovascular outcome trial: cardiovascular safety of linagliptin versus glimepiride. Diabetes Care. 2019;42:2204-10

3) Merola D, Schneeweiss S, Sreedhara S, Zabotka LE, Quinto K, Concato J, Wang SV. Using real-world data to predict results of an ongoing phase IV oncology trial: comparative safety of degarelix vs. leuprolide in advanced prostate cancer. Manuscript in preparation.

- * Close emulation refers to trials where there were few emulation challenges
- RA = regulatory agreement (point est and CI on same side of null); EA = estimate agreement (RWE estimate in CI of RCT); SD = std diff agreement (≤ 2)

Outline

Emulation Challenges

Emulation Differences

- Inclusion-exclusion emulation
- Population distribution
- Comparator emulation (good, moderate, poor)
- Outcome emulation (good, moderate)
- Placebo control
- In-hospital start of medication
- Dose titration protocol during follow-up
- Delayed effect with a long follow-up window
- Run-in window
- Discontinuation of maintenance therapy at randomization
- Robustness

Emulation Differences

Inclusion-exclusion emulation

- Population distribution
- Comparator emulation (good, moderate, poor)
- Outcome emulation (good, moderate)
- Placebo control
- In-hospital start of medication
- Dose titration protocol during follow-up
- Delayed effect with a long follow-up window
- Run-in window
- Discontinuation of maintenance therapy at randomization
- Robustness

PARADIGM-HF (Phase 3)

Inclusion

Age>=18, HFrEF, HF hospitalization within 12 months Stable on ACEis/ARBs and beta-blocker therapies

Exclusion

- Allergy, intolerance, and contraindication to any of the study drugs
- History of angioedema
- Treatment with both ACEis AND ARBs
- Acute decompensated H
- Symptomatic hypotension
- Low eGFR/renal dysfunction
- Hyperkalemia
- ACS, Stroke, TIA, CABG, PCI, Other CV Procedures, Carotid Angioplasty within 3 months
- Coronary/carotid artery disease or PCI within 6 mo. after visit 1
- CRT device within 3 months prior to visit 1 or intent to implant
- History of heart transplant, on transplant list, or with LVAD
- History of severe pulmonary disease
- Peripartum- or chemotherapy- induced cardiomyopathy
- Untreated ventricular arrhythmia with syncopal episodes
- Symptomatic bradycardia or 2nd & 3rd degree AV block
- Hemodynamically significant mitral and/or aortic valve disease
- Active IBD, Duodenal/gastric ulcers
- Hepatic disease
- Cholestyramine or colestipol resins
- Presence of any disease with a life expectancy of <5 years
- Ivabradine use

Well emulated

Difficult to emulate

Emulation Differences

- Inclusion-exclusion emulation
- Population distribution
- Comparator emulation (good, moderate, poor)
- Outcome emulation (good, moderate)
- Placebo control
- In-hospital start of medication
- Dose titration protocol during follow-up
- Delayed effect with a long follow-up window
- Run-in window
- Discontinuation of maintenance therapy at randomization
- Robustness

Emulation Differences

- Inclusion-exclusion emulation
- Population distribution
- Comparator emulation (good, moderate, poor)
- Outcome emulation (good, moderate)
- Placebo control
- In-hospital start of medication
- Dose titration protocol during follow-up
- Delayed effect with a long follow-up window
- Run-in window
- Discontinuation of maintenance therapy at randomization
- Robustness

Good	Trial had active comparator
Moderate	Placebo emulated by drug expected to be unrelated to the outcome AND cohort characteristics well balanced, OR active comparator had to be modified for feasibility reasons
Poor	Placebo emulated by drug expected to be

Placebo emulated by drug expected to be unrelated to the outcome AND expectation of residual confounding from characteristics poorly measured in claims (e.g. SES)

Placebo control emulation

RCT: DPP4i vs <u>placebo</u> and risk of 3P MACE

Diabetes

RWE: DPP4i vs 2nd gen sulfonylurea and risk of 3P MACE Hazard Ratio (95% CI)

- Expensive new drug vs older cheap drug
- Difficult to capture SES differences?

Placebo control emulation

RCT: GLP1, SGLT2i vs placebo and risk of 3P MACE* RWE: GLP1, SGLT2i vs DPP4i and risk of 3P MACE*

Hazard Ratio (95% CI)

- Comparing expensive newer drugs
- Closer therapeutic alternatives

Emulation Differences

- Inclusion-exclusion emulation
- Population distribution
- Comparator emulation (good, moderate, poor)
- Outcome emulation (good, moderate)
- Placebo control
- In-hospital start of medication
- Dose titration protocol during follow-up
- Delayed effect with a long follow-up window
- Run-in window
- Discontinuation of maintenance therapy at randomization
- Robustness

Assessed with high specificity Lower specificity or high missingness

Outcome emulation

_	RCT						RWE					
_	Exposed			Comparator			Exposed			Comparator		r
	Events N Rate* Events N Rate			Rate*	Events	Ν	Rate*	Events	Ν	Rate*		
ROCKET-AF	188	6,958	1.7	241	7,004	2.2	419	51,318	1.5	518	51,318	2.4
PARADIGM-HF	914	4,187	21.8	1,117	4,212	26.5	645	3,033	46.4	636	3,033	44.6
LEAD2	n/a	482	1.0	n/a	242	1.0	n/a	373	1.0	n/a	373	0.9
	Exposed rates										≜	
	Ť_					Con	nparator	rates				

Assessed with high specificity Lower specificity or high missingness

Emulation Differences

- Inclusion-exclusion emulation
- Population distribution
- Comparator emulation (good, moderate, poor)
- Outcome emulation (good, moderate)
- Placebo control
- In-hospital start of medication
- Dose titration protocol during follow-up
- Delayed effect with a long follow-up window
- Run-in window
- Discontinuation of maintenance therapy at randomization
- Robustness

In-hospital start of medication

VEL RI EX

MarketScan 1.20 (0.95, 1.51) Optum 0.73 (0.52, 1.01)

P for homogeneity 0.01

Good

Moderate

Poor

In-hospital start of medication

VERIT	S
3.59 6	
155	/
~~~	

N.	
v	

					Stand.				
Trial name	Comparator	Endpoint	RCT result	<b>RWE results</b>	Diff.	Test	Ag	reeme	nt
TRITON-TIMI	Prasugrel vs clopidogrel	3P MACE	<b>0.81</b> (0.73, 0.90)	<b>0.88</b> (0.79, 0.97)	-1.11	Sup	RA	EA	SD
PLATO	Ticagrelor vs clopidogrel	3P MACE	<b>0.84</b> (0.77 <i>,</i> 0.92)	<b>0.92</b> (0.83, 1.02)	-1.31	Sup	-	EA	SD
ISAR-REACT5	Ticagrelor vs prasugrel	3P MACE	<b>1.36</b> (1.09, 1.70)			Sup			



### Take-home points:

- RCT shows early and immediate effect – starting FU while in hospital
- RWE study question targets patients who <u>survive until discharge</u> and fill 1st Rx
- Cannot capture early effect without linked hospital + outpatient Rx data



### **Emulation Differences**

- Inclusion-exclusion emulation
- Population distribution
- Comparator emulation (good, moderate, poor)
- Outcome emulation (good, moderate)
- Placebo control
- In-hospital start of medication
- Dose titration protocol during follow-up
- Delayed effect with a long follow-up window
- Run-in window
- Discontinuation of maintenance therapy at randomization
- Robustness



# Dose-titration during follow up





Trial name	Comparator	Endpoint	RCT result	RWE results	Stand. Diff.	Test	Agı	reeme	ent
TRITON-TIMI	Prasugrel vs clopidogrel	3P MACE	<b>0.81</b> (0.73, 0.90)	<b>0.88</b> (0.79, 0.97)	-1.11	Sup	RA	EA	SD
PLATO	Ticagrelor vs clopidogrel	3P MACE	<b>0.84</b> (0.77, 0.92)	<b>0.92</b> (0.83, 1.02)	-1.31	Sup	_	EA	SD
ISAR-REACT5	Ticagrelor vs prasugrel	3P MACE	<b>1.36</b> (1.09, 1.70)			Sup			

"We compared ticagrelor (180-mg loading dose, 90 mg twice daily thereafter) and clopidogrel (300-to-600-mg loading dose, 75 mg daily thereafter)" Wallentin, NEJM 2009

"The first 3 weeks patients will receive rivaroxaban 15 mg twice-daily followed by rivaroxaban 20 mg once-daily." (EINSTEIN protocol)

Good						Stand.				
Madavata	Trial name	Comparator	Endpoint	RCT result	<b>RWE results</b>	Diff.	Test	Ag	reeme	ent
woderate	EINSTEIN-	Rivaroxaban vs	VTE	<b>0.68</b> (0.44, 1.04)	<b>0.75</b> (0.63, 0.89)	-0.42	NI	*	EA	SD
Poor	DVI	Enoxapann/ VKA								
	EINSTEIN- PE	Rivaroxaban vs Enoxaparin/VKA	VTE	<b>1.12</b> (0.75, 1.68)	<b>0.68</b> (0.58, 0.81)	2.21	NI	*	-	-



### **Emulation Differences**

- Inclusion-exclusion emulation
- Population distribution
- Comparator emulation (good, moderate, poor)
- Outcome emulation (good, moderate)
- Placebo control
- In-hospital start of medication
- Dose titration protocol during follow-up
- Delayed effect with a long follow-up window
- Run-in window
- Discontinuation of maintenance therapy at randomization
- Robustness



### **Delayed treatment effects**



HORIZON-PIVOTAL (osteoporosis, hip fracture)





# Delayed effect with long follow up





Good

Moderate

Poor



# RCT by RWE findings



- Emulation difference: time varying effect over long follow up in RCT + low adherence in clinical practice
- Correction for design difference
   → closer calibration

### Take home points:

- Challenging to replicate trial findings when effect is delayed
- Patients in clinical practice may not experience full benefit seen in explanatory trial



### **Emulation Differences**

- Inclusion-exclusion emulation
- Population distribution
- Comparator emulation (good, moderate, poor)
- Outcome emulation (good, moderate)
- Placebo control
- In-hospital start of medication
- Dose titration protocol during follow-up
- Delayed effect with a long follow-up window
- Run-in window
- Discontinuation of maintenance therapy at randomization

On placebo Both treatment groups On 1 treatment arm

Robustness

# Discontinuation of maintenance therapy Short term ↑ exacerbation



D5896 Treatment: ICS-LABA vs ICS Outcome: Serious asthma related events

ICS = inhaled corticosteroid LABA = long-acting beta agonist

Discontinues LABA therapy

#### Assumptions Scenario 1:

- Truth is upper bound of non-inferiority limit (1.32)
- 50% of patients were on LABA at baseline
- No effect of discontinuation



#### Assumptions Scenario 2:

- Truth is upper bound of non-inferiority limit (1.32)
- 50% of patients were on LABA at baseline
- Discontinuation increases risk of outcome by 50%



Suissa S et al. Chest 2013 143(5). May 2013" 1208-1213



### **Emulation Differences**

- Inclusion-exclusion emulation
- Population distribution
- Comparator emulation (good, moderate, poor)
- Outcome emulation (good, moderate)
- Placebo control
- In-hospital start of medication
- Dose titration protocol during follow-up
- Delayed effect with a long follow-up window
- Run-in window
- <u>Discontinuation of maintenance therapy at randomization</u>
- Robustness



# Robustness of findings across multiple data sources

For 2 out of 32 trials, we observed results that diverged by database and could not be pooled.

VERO

### 

#### **ISAR-REACT5**

Ticagrelor vs pr	asugrel on 3PMACE		Teriparatide vs risedronate on vertebral fracture			
Result				Result		
RCT	<b>1.36</b> (1.09, 1.70)	_	RCT	<b>0.44</b> (0.29, 0.68)		
MarketScan	<b>1.20</b> (0.95, 1.51)	p for homogeneity	MarketScan	<b>1.33</b> (0.80, 2.20)		
Optum	0.73 (0.52, 1.01)	<0.03	Optum	<b>0.43</b> (0.19, 0.96)		
Pooled	n/a	-	Pooled	n/a		

### Take-home point:

• Important to replicate in multiple databases

"substantial evidence of effectiveness...2 adequate and well controlled investigations" FDA Guidance for Industry



# Robustness to alternative design/analysis specifications

For 2 out of 32 trials, colleagues independently asked similar questions using the same data sources

#### Take-home point:

• Important to investigate robustness of evidence to reasonable alternative choices

	PARADIGM	<b>0.80</b> (0.73, 0.87)
	RCT-DUPLICATE	<b>0.97</b> (0.87-1.08)
-	Initiators of ACE/ARB vs sacubitril/valsartan	0.92 (0.84, 1.00)
	Switchers from ACE to ARB vs sacubitril/valsartan	0.79 (0.74, 0.85)
-	Combined	<b>0.84</b> (0.80, 0.89)

ON-TARGET	<b>1.0</b> (0.9-1.1)
RCT-DUPLICATE	<b>0.8</b> (0.8-0.9)
Fralick et al. RWE JAMA-IM	<b>1.0</b> (0.9-1.1)

### JAMA Internal Medicine | Original Investigation Use of Health Care Databases to Support Supplemental Indications of Approved Medications Michael Fralick, MD; Aaron S. Kesselheim, MD, JD, MPH; Jerry Avorn, MD; Sebastian Schneeweiss, MD, ScD

#### Original research

Effectiveness of angiotensin-neprilysin inhibitor treatment versus renin-angiotensin system blockade in older adults with heart failure in clinical care

Rishi J Desai ⁽⁰⁾, ¹ Elisabetta Patorno, ¹ Muthiah Vaduganathan, ² Mufaddal Mahesri, ¹ Kristyn Chin, ¹ Raisa Levin, ¹ Scott D Solomon, ² Sebastian Schneeweiss¹



Desai et al.



# Outline

Emulation

Challenges



Lessons Learned



2022 Harvard Medical / Brigham Division of Pharmacoepidemiology



# Challenges with emulation of trial design expected to shift the target question for RWE study vs RCT

- a) Start of follow up in hospital (hospital Rx data not available in claims, but may be available in linked data)
- b) Run-in that selects responders to one treatment arm
- c) Mixing effect of randomization and discontinuation of baseline maintenance therapy
- d) Delayed effect over long follow up
- e) Differences in population distribution coupled with effect modification
- f) Inadequate emulation of the exposure or outcome

<u>Few emulation challenges</u> = None of { a, b, c, d } AND comparator and outcome emulation are at least moderate, with >1 classified as good

<u>More emulation challenges</u> = a OR b OR c OR d OR poor comparator emulation OR neither comparator and outcome emulation are classified as good



### Few emulation challenges vs more emulation challenges

Pearson's overall = 0.80; 0.62-0.90

	Few emulation challenges N = 16	More emulation challenges N = 16
Pearson's	<b>0.93</b> (0.79, 0.97)	0.46 (-0.05, 0.78)
ICC, 95% CI	0.89 (0.68, 0.96)	0.41 (-0.03, 0.73)
RA*	16 (100%)	9 (56%)
EA	14 (88%)	7 (44%)
SD	14 (88%)	10 (63%)

intraciass correlation coefficient; CI = confidence interval; RA = regulatory agreement; EA = estimate agreement; SD = standardized difference agreement



#### Take-home points:

Recall: For this methods project, the goal was to emulate published RCTs as closely as possible:

- Few emulation challenges  $\rightarrow$  closer agreement in effect estimates
- More emulation challenges  $\rightarrow$  less agreement in RCT/RWE effect estimates: diverge on target question/popⁿ? Different answers may be correct.

2022 Harvard Medical / Brigham Division of Pharmacoepidemiology Total # trials = 32, includes 30 emulations of completed trials and 2 predictions of ongoing trials. * Proportions represent full or partial regulatory agreement. Full agreement only was 75% vs 38%)



#### 2022 Harvard Medical / Brigham Division of Pharmacoepidemiology



# Chance? (or other factors)

Trial name	RCT result	RWE results	Agreement		
			Statistical significance	Estimate	Standardized difference
EINSTEIN-DVT	0.68 (0.44, 1.04)	<b>0.75</b> (0.63, 0.89)	Partial	Yes	Yes
EINSTEIN-PE	<b>1.12</b> (0.75, 1.68)	<b>0.68</b> (0.58, 0.81)	No	No	No

- Both RCTs met non-inferiority criteria
- P-value for homogeneity 0.09

Meta-analysis of 6 trials finds no heterogeneity of effects in patients presenting with DVT or PE. Dentali F, et al. Intern Emerg Med. 2015



# Take-home points

1. RWE studies come to the same conclusions as RCTs when we are able to emulate well, i.e. target the same question



- 2. There is more nuance to evaluation of replicability of trial results with RWE than can be found in binary agreement metrics.
  - Residual bias, random error
  - Efficacy vs effectiveness
  - Single trial as reference standard
- 3. In evaluating when and how RWE studies complement RCTs, we should think about the target trial design that would match the need/question of end users (ideal vs pragmatic)

With data that are fit-for-purpose and proper design and analysis, non-randomized real-world evidence studies can come to similar conclusions about a drug's treatment effect as randomized trials





# Harvard study team:



Faculty: Drs. Schneeweiss, Wang, Franklin, Glynn, Patorno, Desai, Choudhry, Huybrechts, Fischer, Feldman, Gagne, Bykov

Research Staff: Bessette, Dr. D'Andrea, Chin, Gautham, Dr. Gopalakrishna, Jawaid, Jin, Lee, Dr. Mahesri, Dr. Pawar, Sears, Sreedhara, Tesfaye, Umarje, York, Zabotka, Zakoul

### Aetion team: AETION.

Drs. Garry, Rassen, and Isaman, Gibbs, Gilpin

FDA colleagues:



Drs. Martin, Quinto, Concato, Corrigan-Curay, Paraoan, Bradley, and Li

### Expert advisor panel:*

Drs. Steve Goodman, Stanford; Miguel Hernan, Harvard; Wayne Ray, Vanderbilt; Samy Suissa, McGill; Alan Brookhart, Duke

*While we are most grateful for the advice we received, the authors are solely responsible for the presented work