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Duke Forge promotes a culture of learning 
health by engaging partners to curate, 
analyze, and disseminate reliable and 
actionable information that leads to improved 
health for individuals and populations. 
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Clinicians & Health System Staff with deep subject matter expertise

Quantitative Faculty & Trainees with methodological expertise

Software Architecture & Engineering

Motivated by a framework of Value-Based Healthcare 
Delivery and addressing societal inequities in health



Building Culture of 
Data Science Inquiry
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• 65 year old woman
• previous medical 

history of a myocardial 
infarction

• history of cardiac 
bypass surgery

• congestive heart 
failure 

• history of substance 
abuse

• rarely visits her doctor



• comes to the emergency room 
at Duke University Medical 
Center

• feels like she can’t breathe
• she is diagnosed with 

pulmonary edema
• admitted to Duke Hospital for 

10 days and discharged
• WHAT HAPPENS NEXT?
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Value-Based Reimbursement Models
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Value-Based Reimbursement Models

“Obamacare” Medicare Shared Savings Program
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ACO shares 
40%-75% of losses 
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performance
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75% of savings
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“Accountable Care Organization (ACO)”
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We are assuming 
“upside” and 
“downside”          for 
healthcare delivery
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Assess & Quantify Upside/Downside

our ACO saved the US $22M last year
and kept $9.5M upside



Exceed

Save

Hospitalizations

30%
admission rate 7/17-7/18

15%
readmission rate 7/17-7/18

Duke’s ACO: “Duke Connected Care”
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Time Machine

Deep Poisson Factor Model Architecture 



6 MONTH PREDICTION WINDOW

Probability of Unplanned Admissions for:

Any Cause & 31 Diagnostic Categories

Absolute and Percentile Rank 

12-MONTH RETROSPECTIVE CMS CLAIMS DATA

12-MONTH RETROSPECTIVE EHR (COMMON DATA MODEL) DATA

BEGINNING OF MONTH

Monthly Data Refresh 
Monthly Predictive Model Retraining 

REGISTRY 
Of interventions, 

outcomes, model 
versions, patient-level  

prediction history

54,000 Medicare Patients

Independent Evaluation
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Boxplot of monthly AUCs for 31 Diagnostic Categories over 12 months
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A patient & clinician-centric project & workflow



https://pxhere.com/en/photo/861253

RISK OF HOSPITALIZATION  
IN THE NEXT 6 MONTHS

Any Cause 
Heart Attack 

Congestive Heart Failure 
Pneumonia 
Psychosis 

Hip Fracture

…

DUKE CONNECTED CARE 
CARE MANAGEMENT TEAM

above risk threshold

above risk threshold

INTERVENTIONS

home visit by 
pharmacy tech, $ 

assistance for 
meds. social work 

assistance with 
transportation 

SCAN AND PREDICT RISK FOR 32 DIAGNOSES 
ACROSS 52000 PATIENTS EVERY MONTH
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A patient & clinician-centric project & workflow

A high “real world user” to “PhD” quotient
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Sure we’re building apps, but we’re really 
building ecosystems…
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If we’re trying to build ecosystems… 
then an EHR needs to be evaluated by 
whether it is truly participatory in this 
ecosystem.  

Or, we need to remediate its deficiencies
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54,000 Medicare Patients



Single Hospital Health System Regional Network National Data

Exome RNASeq Whole Genome Whole Genome + Epigenome

Wide

Deep

Andrew Ng

What is the data 
platform that gets 

us there?



Dark Energy & Matter
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Machine Learning
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What’s taking us so long to  
do such data integration?
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“There’s a lot of undifferentiated heavy 
lifting that stands between your idea and 
that success… 70% of your time, energy, 
and dollars go into the undifferentiated 
heavy lifting and only 30% of your energy, 
time, and dollars gets to go into the core 
kernel of your idea.”

—Jeff Bezos
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Wearable Patient Reported
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Data Transformation

Machine Learning

Workflow Integration

What’s taking us so long to  
do such data integration?



EHR Claims

Med Adherence Wearable Patient Reported

Apps Apps

AppsApps Apps

Transactional Datastore ( Not a Data Warehouse )

API Abstraction Layer

Social Determinants GenomicsEpigeneticsSource Data

“Packaged” Atomic Data

Application-Level
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Rack of Servers



Rack of Servershttps://forge.duke.edu/blog/
what-health-data-science-and-
raising-chickens-have-common







No statistical inference  
or machine learning here!
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Scalable and accurate deep learning with electronic health
records
Alvin Rajkomar 1,2, Eyal Oren1, Kai Chen1, Andrew M. Dai1, Nissan Hajaj1, Michaela Hardt1, Peter J. Liu1, Xiaobing Liu1, Jake Marcus1,
Mimi Sun1, Patrik Sundberg1, Hector Yee1, Kun Zhang1, Yi Zhang1, Gerardo Flores1, Gavin E. Duggan1, Jamie Irvine1, Quoc Le1,
Kurt Litsch1, Alexander Mossin1, Justin Tansuwan1, De Wang1, James Wexler1, Jimbo Wilson1, Dana Ludwig2, Samuel L. Volchenboum3,
Katherine Chou1, Michael Pearson1, Srinivasan Madabushi1, Nigam H. Shah4, Atul J. Butte2, Michael D. Howell1, Claire Cui1,
Greg S. Corrado1 and Jeffrey Dean1

Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare
quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR
data, a labor-intensive process that discards the vast majority of information in each patient’s record. We propose a representation
of patients’ entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that
deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple
centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two US academic
medical centers with 216,221 adult patients hospitalized for at least 24 h. In the sequential format we propose, this volume of EHR
data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for
tasks such as predicting: in-hospital mortality (area under the receiver operator curve [AUROC] across sites 0.93–0.94), 30-day
unplanned readmission (AUROC 0.75–0.76), prolonged length of stay (AUROC 0.85–0.86), and all of a patient’s final discharge
diagnoses (frequency-weighted AUROC 0.90). These models outperformed traditional, clinically-used predictive models in all cases.
We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios. In a case
study of a particular prediction, we demonstrate that neural networks can be used to identify relevant information from the
patient’s chart.

npj Digital Medicine �(2018)�1:18� ; doi:10.1038/s41746-018-0029-1

INTRODUCTION
The promise of digital medicine stems in part from the hope that,
by digitizing health data, we might more easily leverage computer
information systems to understand and improve care. In fact,
routinely collected patient healthcare data are now approaching
the genomic scale in volume and complexity.1 Unfortunately,
most of this information is not yet used in the sorts of predictive
statistical models clinicians might use to improve care delivery. It
is widely suspected that use of such efforts, if successful, could
provide major benefits not only for patient safety and quality but
also in reducing healthcare costs.2–6

In spite of the richness and potential of available data, scaling
the development of predictive models is difficult because, for
traditional predictive modeling techniques, each outcome to be
predicted requires the creation of a custom dataset with specific
variables.7 It is widely held that 80% of the effort in an analytic
model is preprocessing, merging, customizing, and cleaning
datasets,8,9 not analyzing them for insights. This profoundly limits
the scalability of predictive models.
Another challenge is that the number of potential predictor

variables in the electronic health record (EHR) may easily number
in the thousands, particularly if free-text notes from doctors,

nurses, and other providers are included. Traditional modeling
approaches have dealt with this complexity simply by choosing a
very limited number of commonly collected variables to consider.7

This is problematic because the resulting models may produce
imprecise predictions: false-positive predictions can overwhelm
physicians, nurses, and other providers with false alarms and
concomitant alert fatigue,10 which the Joint Commission identified
as a national patient safety priority in 2014.11 False-negative
predictions can miss significant numbers of clinically important
events, leading to poor clinical outcomes.11,12 Incorporating the
entire EHR, including clinicians’ free-text notes, offers some hope
of overcoming these shortcomings but is unwieldy for most
predictive modeling techniques.
Recent developments in deep learning and artificial neural

networks may allow us to address many of these challenges and
unlock the information in the EHR. Deep learning emerged as the
preferred machine learning approach in machine perception
problems ranging from computer vision to speech recognition,
but has more recently proven useful in natural language
processing, sequence prediction, and mixed modality data
settings.13–17 These systems are known for their ability to handle
large volumes of relatively messy data, including errors in labels
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standard definition of “unplanned”76 percentage, so we used a modified
form of the Centers for Medicare and Medicaid Services definition,77 which
we detail in the supplement. Billing diagnoses and procedures from the
index hospitalization were not used for the prediction because they are
typically generated after discharge. We included only readmissions to the
same institution.

Long length of stay. We predicted a length of stay at least 7 days, which
was approximately the 75th percentile of hospital stays for most services
across the datasets. The length of stay was defined as the time between
hospital admission and discharge.

Diagnoses. We predicted the entire set of primary and secondary ICD-9
billing diagnoses from a universe of 14,025 codes.

Prediction timing
This was a retrospective study. To predict inpatient mortality, we stepped
forward through each patient’s time course, and made predictions every
12 h starting 24 h before admission until 24 h after admission. Since many
clinical prediction models, such as APACHE,78 are rendered 24 h after
admission, our primary outcome prediction for inpatient mortality was at
that time-point. Unplanned readmission and the set of diagnosis codes
were predicted at admission, 24 h after admission, and at discharge. The
primary endpoints for those predictions were at discharge, when most
readmission prediction scores are computed79 and when all information
necessary to assign billing diagnoses is available. Long length of stay was
predicted at admission and 24 h after admission. For every prediction we
used all information available in the EHR up to the time at which the
prediction was made.

Fig. 4 Data from each health system were mapped to an appropriate FHIR (Fast Healthcare Interoperability Resources) resource and placed in
temporal order. This conversion did not harmonize or standardize the data from each health system other than map them to the appropriate
resource. The deep learning model could use all data available prior to the point when the prediction was made. Therefore, each prediction,
regardless of the task, used the same data
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further research is needed regarding applicability to all predic-
tions, the cognitive impact, and clinical utility.

METHODS
Datasets
We included EHR data from the University of California, San Francisco
(UCSF) from 2012 to 2016, and the University of Chicago Medicine (UCM)
from 2009 to 2016. We refer to each health system as Hospital A and
Hospital B. All EHRs were de-identified, except that dates of service were
maintained in the UCM dataset. Both datasets contained patient
demographics, provider orders, diagnoses, procedures, medications,
laboratory values, vital signs, and flowsheet data, which represent all
other structured data elements (e.g., nursing flowsheets), from all inpatient
and outpatient encounters. The UCM dataset additionally contained de-
identified, free-text medical notes. Each dataset was kept in an encrypted,
access-controlled, and audited sandbox.
Ethics review and institutional review boards approved the study with

waiver of informed consent or exemption at each institution.

Data representation and processing
We developed a single data structure that could be used for all predictions,
rather than requiring custom, hand-created datasets for every new
prediction. This approach represents the entire EHR in temporal order:
data are organized by patient and by time. To represent events in a
patient’s timeline, we adopted the FHIR standard.75 FHIR defines the high-
level representation of healthcare data in resources, but leaves values in

each individual site’s idiosyncratic codings.28 Each event is derived from a
FHIR resource and may contain multiple attributes; for example, a
medication-order resource could contain the trade name, generic name,
ingredients, and others. Data in each attribute were split into discrete
values, which we refer to as tokens. For notes, the text was split into a
sequence of tokens, one for each word. Numeric values were normalized,
as detailed in the supplement. The entire sequence of time-ordered
tokens, from the beginning of a patient’s record until the point of
prediction, formed the patient’s personalized input to the model. This
process is illustrated in Fig. 4, and further details of the FHIR representation
and processing are provided in Supplementary Materials.

Outcomes
We were interested in understanding whether deep learning could
produce valid predictions across wide range of clinical problems and
outcomes. We therefore selected outcomes from divergent domains,
including an important clinical outcome (death), a standard measure of
quality of care (readmissions), a measure of resource utilization (length of
stay), and a measure of understanding of a patient’s problems (diagnoses).

Inpatient mortality. We predicted impending inpatient death, defined as a
discharge disposition of “expired.”42,46,48,49

30-day unplanned readmission. We predicted unplanned 30-day read-
mission, defined as an admission within 30 days after discharge from an
“index” hospitalization. A hospitalization was considered a “readmission” if
its admission date was within 30 days after discharge of an eligible index
hospitalization. A readmission could only be counted once. There is no

Fig. 3 The patient record shows a woman with metastatic breast cancer with malignant pleural effusions and empyema. The patient timeline
at the top of the figure contains circles for every time-step for which at least a single token exists for the patient, and the horizontal lines show
the data type. There is a close-up view of the most recent data points immediately preceding a prediction made 24 h after admission. We
trained models for each data type and highlighted in red the tokens which the models attended to—the non-highlighted text was not
attended to but is shown for context. The models pick up features in the medications, nursing flowsheets, and clinical notes relevant to the
prediction
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Data Liquidity

Consider the shipping container or 
“intermodal freight container”



Data Liquidity
Such containers 
revolutionized shipping 
because the standardized 
intermodal container can 
be easily stacked on a 
freighter, moved to a train, 
and transferred to a truck. 
Every major port in the 
world has the 
infrastructure to handle 
these containers.  

And this solves the 
problem of how to pack 
bananas next to grand 
pianos and safely get them 
to their destinations



Data Liquidity
We need to do the same 
for health-relevant data… 

i.e. have standardized 
containers that makes any 
type of data easy to pack, 
grab, combine and move 
around.  

Your “shipping manifest” 
may show that you have a 
breast MRI inside, or a 24-
hour urine creatinine, but 
this is easily manageable 
because the container is 
standardized and clearly 
labeled



Data Liquidity
Examples of health data 
“containerization” 
standards include the “Fast 
Healthcare Interoperability 
Resource” (FHIR) standard 

Whether it’s this standard, 
alone, or in conjunction 
with other “webservice-
friendly” standards,  

Our aim should be to build 
the “data liquidity 
ecosystem” equivalent to 
freighters, cranes, trains 
and trucks that facilitate 
the logistics of health data 
transport



Data Liquidity

And the data liquidity 
infrastructure to deliver 
these data to an artificial 
intelligence algorithm, app, 
or a user facilitates rapid 
and safe shipment of these 
data containers to their 
destinations



Data Liquidity

Adapted from Andrew Ng Talk: https://youtu.be/F1ka6a13S9I

How do we move 
along the X-axis?

Quality

https://youtu.be/F1ka6a13S9I
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Caution



Algorithms don’t 
have ethics







Algorithms don’t 
think like we do



What a deep convolutional neural net learns



https://www.labsix.org/physical-objects-that-fool-neural-nets/

Tabby Cat ~ Guacamole ?!

Inject random 
pixel noise



https://www.labsix.org/physical-objects-that-fool-neural-nets/

Tabby Cat ~ Guacamole ?!
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https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dynamic_rnn.py





Security



Samples Algorithm



What is Data 
Science?



Knowledge among computer scientists about how to think of 
and approach the analysis of data is limited, just as the 
knowledge of computing environments by statisticians is 
limited. A merger of the knowledge bases would produce a 
powerful force for innovation. 

—Bill Cleveland on Data Science (2001)
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Clinical Subject 
Matter Expertise

Quantitative Expertise

Software Engineering

Machine Learning

Biostatistics

Clinical Informatics

Python
R

Application Programming InterfacesRelational Databases

NoSQL Datastores
Containerization

Cloud

Deep Neural Networks

Class Discovery Methods

Experimental Design

Clinical Trial Design

Reinforcement Learning



We need an “operating system” for healthcare delivery 

CPU Flash Memory Storage Input/Output

HARDWARE

OPERATING SYSTEM

SOFTWARE

Users

System Software

UsersUsers

Application Software
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Patient/Person 
Engagement

Robust and Secure 
EHR Data Access 
for Operations & 

Research

Merging of EHR 
Data with “health 

dark matter”

Precision 
Medicine and 

Omics

Consent Mobile 
Apps Text 

Mining/
NLP

Image 
APIs

FHIR

Abstraction

Unstructured2Structured

Open APIs

Merged “Process Log” (Data Lake)

Linkage/Integration

Machine Learning

Machine Learning

FHIR-Plus

Research Answers/Clinical Decision Applications

Research Optimization Apps

INTEROPERABILITY AS A BASIC, DRIVING REQUIREMENT

REPRODUCIBILITY & PROVENANCE AS BASIC, DRIVING REQUIREMENTS

We need an “operating system” for healthcare delivery 

HARDWARE



We need Data Liquidity



Rapid Prototyping & Development



Rapid Prototyping & Development
Rapid Feedback Loops

Users

Data Science 
Teams

patients

clinicians

administrators



EHR Claims

Med Adherence Wearable Patient Reported

Apps Apps

AppsApps Apps

Transactional Datastore ( Not a Data Warehouse )

API Abstraction Layer

Social Determinants GenomicsEpigeneticsSource Data

“Packaged” Atomic Data

Application-Level

What should the EHR of the 
future look like?
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Resource-Based Policies as Code



Actions or Operations

Run Virtual Machine


Start Virtual Machine


Stop Virtual Machine
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Virtual Machine

Create Storage Bucket


Delete Storage Bucket


List Storage Buckets
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Object Storage

Create Algorithm
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Resource-Based Policies as Code

Identity Management

‘Allow’ or 
‘Deny’

‘vm: StartVM’

‘predictive-model—
unique-id:tensor-flow-model/

mssp-admission-v009’

{‘stringEquals’ : 
{‘username’ : ‘huang008’}}

Denial by default
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Resource-Based Policies as CodeIdentity Management
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Virtual Machine Instances
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Identity Management

Agent

Request

Author-
ization

ActionsResources

• user 
• role 
• app

• allow/deny

• virtual machines 
• policies 
• predictive model 
• datastore

• run 
• start 
• stop 
• create 
• delete

A rich, robust and flexible Identity 
Management data model that enables 
automated policy enforcement in 
managing the security of resources. 
Auditable, with command line tooling, a 
well-documented RESTful API, and 
software development kits for standard 
languages and operating systems
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•Joining Data 
•Ethics of Data Science (Corroboration, Continuous QI) 


