

Adapting clinical trial design to meet the needs of learning healthcare systems

Harriette Van Spall, MD, MPH

Associate Professor of Medicine, McMaster University Scientist, Population Health Research Institute Cardiologist, Hamilton Health Sciences @hvanspall

May 31, 2019

NIH Collaboratory Rounds

Objectives

- 1. To review the importance of learning healthcare systems in improving healthcare quality
- 2. To discuss the role of clinical trial design in meeting the needs of healthcare systems
- 3. To present the design and results of the Patient-Centered Care Transitions (PACT-HF) pragmatic clinical trial

Learning healthcare systems

- Generate and apply the best evidence for collaborative care choices between patients and clinicians
- **Drive discovery** as a natural outgrowth of patient care
- Ensure quality, innovation, safety, and value in health care

Institute of Medicine. Roundtable on Evidence-Based Medicine. Roundtable on Evidence-Based Medicine Charter and Vision Statement, 2006

Why learning healthcare systems are important

Clinical complexity

- Improved Tx of acute illness \rightarrow increased survival
- Older patients with chronic illness, complex comorbidities
- Care informed by explanatory clinical trials
 - Restrictive inclusion criteria, women and those with comorbidities underrepresented
 - Limited generalizability
- Important to assess treatment outcomes in real-world healthcare settings

Why learning healthcare systems are important

Health care system complexity

- Healthcare delivery fragmented between
 - organ-based specialists
 - Settings / organizations
 - payment models single vs multiple payer systems, different incentives
- Knowledge-treatment gaps
- Important to study effect of interventions at healthcare system level

Why learning healthcare systems are important

Data complexity

- Different stakeholders interested in different outcomes of interest
- Different sources of data, limited interoperability
- Important to analyze data in an efficient, effective manner to drive change

Characteristics of a learning healthcare system

Smith et al, Best Care at Lower Cost: The Path to Continuously Learning Health Care in America, 2013 https://www.ncbi.nlm.nih.gov/books/NBK207218/

Inspiring Innovation and Discovery

Characteristics of a learning healthcare system

- 1. Have a culture of knowledge and quality improvement
- 2. Encourage research innovation
 - Embedding research into clinical practice
 - Generating knowledge at the point of care
- 3. Harness data from EMRs, claims/administrative databases
 - Public data access

Characteristics of a learning healthcare system

- 4. Foster trust between research and clinical teams
- 5. Engage patients, clinicians, key healthcare system stakeholders
 - Research priorities, design, partnerships
 - Culture of empowerment

Adapting research to a learning healthcare system

- Identify questions important to the healthcare system
- Select the right question for the study
- Choose a study design that reliably answers the question
 - Scientific limitations of before-after and observational study designs
 - Practical limitations of explanatory clinical trials
 - Role of pragmatic clinical trials

Adapting research to a learning healthcare system

- Create the culture and partnerships for research implementation
 - Culture of research
 - Culture of "knowledge to action"
- Minimize research burden on front-line clinicians
 - Recruitment
 - Data collection
- Select relevant outcomes to measure impact

Inspiring Innovation and Discovery

Adapting research to a learning healthcare system

McMaster University The problem of heart failure (HF)

Inspiring Innovation and Discovery

Allen et al., Circulation 2012; 125(15): 1928-52

HF hospitalizations by age

Inspiring Innovation and Discovery

Dai et al.

Figure 1. Hospitalizations with most responsible diagnosis (MRDx) of heart failure (HF), as a proportion (%) of all other hospitalizations, by sex and age group, Canada (excludes Québec), 2005-2006.

Dai S et al.. Can J Cardiol, 2012;28(1): 74–79.

77

Distribution of HF costs

Stewart et al. Eur J Heart Fail 2002;4:361-7 Graph from Heart & Stroke Foundation

Main challenges: heart failure hospitalization

1. Ambroxy PA et al. The Global Health and Economic Burden of Hospitalizations for Heart Failure. Lessons Learned From Hospitalized Heart Failure Registries. J Am Coll Castiol. 2014;63:1123–1133 2. Cowle MR et al. Improving care for patients with acute heart failure. 2014. Oxford PharmaGenesis: ISBN 978-1-903539-12-5. Available online at: http://www.oxfordhealthpolicyforum.org/reports/acute-heart-failure/improving-care-for-patients-with-acute-heart-failure . 3. Butter J, Braunwald E, Gheorghiade M, Recognizing worsening.

Inspiring Innovation and Discovery

Readmission Rate

Lifetime readmission risk after HF hospitalization

Median Time from hospital discharge

Desai, Stevenson. Circulation. 2012;126:501-506

Comparative effectiveness of transitional espiring langyation and Discovery care services in HF (N=54 RCTs): mortality

Van Spall et al. Eur J HF 2017; 19(11):1427-43

Comparative effectiveness of transitional nsolring Innovation and Discovery care services in HF: readmissions

Van Spall et al. Eur J HF 2017; 19(11):1427-43

Patient-Centered Care Transitions in Heart Failure:

Harriette GC. Van Spall, MD, MPH Associate Professor of Medicine (Cardiology) McMaster University Population Health Research Institute

On behalf of PACT-HF investigators and patients

Funded by Canadian Institutes of Health Research, Ontario's Ministry of Health and Long Term Care Health System Research Fund In-kind support from participating hospitals and Community Care Agencies

Aim

To test effectiveness of a group of transitional care services (PACT-HF) in patients hospitalized for HF within a publicly-funded healthcare system

Outcomes

Primary Outcomes

- 1. All-cause death, readmission, or Emergency Department (ED) visit at 3-months
- 2. All-cause readmission or ED visit at 30 days

Secondary Outcomes

- 1. B-PREPARED score discharge preparedness
- 2. Care Transitions Measure quality of care transition
- 3. EQ-5D-5L quality of life index, validated in HF
- 4. Quality Adjusted Life Years life duration weighted by EQ-5D-5L
- 5. Healthcare system cost

Research approach

- Integrated Knowledge Translation
 - Engaged patients, clinicians and healthcare system decision-makers in study design
 - Used publicly-funded personnel for the intervention
 - Redesigned workflow to integrate care across settings
- Embedded clinical trial
 - Clinical outcomes obtained from administrative database
 - Minimize burden on patients

Pragmatic research approach

Van Spall et al. Am Heart J 2018; 199:75-82

Loudon et al. BMJ 2015;350:h2147

Stepped Wedge Cluster RCT

Hospital	Step (Month)										
	1	2	3	4	5	6	7	8	9	10	11
1	0	1	1	1	1	1	1	1	1	1	1
2	0	0	1	1	1	1	1	1	1	1	1
3	0	0	0	1	1	1	1	1	1	1	1
4	0	0	0	0	1	1	1	1	1	1	1
5	0	0	0	0	0	1	1	1	1	1	1
6	0	0	0	0	0	0	1	1	1	1	1
7	0	0	0	0	0	0	0	1	1	1	1
8	0	0	0	0	0	0	0	0	1	1	1
9	0	0	0	0	0	0	0	0	0	1	1
10	0	0	0	0	0	0	0	0	0	0	1

Van Spall et al. Am Heart J 2018; 199:75-82

Van Spall et al. Am Heart J 2018; 199:75-82

Baseline Characteristics of Patients	PACT-HF (N=1104)	Usual Care (N=1390)	P-value
Demographics			
Age, mean (SD)	77.8 (12.4)	77.6 (11.9)	0.71
Female, n (%)	544 (49.3%)	714 (51.4%)	0.30
Resides in long-term care, n (%)	164 (14.9%)	222 (16.0%)	0.44
Self-reported Quality of Life			
EQ-Visual Acuity Score (1-100), mean (SD)	52.6 (22.7)	53.7 (22.2)	0.20
Comorbidities			
Hypertension, n (%)	844 (76.5%)	1,084 (78.0%)	0.66
Atrial Fibrillation, n (%)	583 (52.8%)	684 (49.2%)	0.07
Myocardial Infarction, n (%)	240 (21.7%)	295 (21.2%)	0.76
Diabetes with complications, n (%)	524 (47.5%)	704 (50.6%)	0.11
Chronic Kidney Disease, n (%)	242 (21.9%)	316 (22.7%)	0.63
Chronic Pulmonary Disease, n (%)	235 (21.3%)	334 (24.0%)	0.11
Cerebrovascular Disease, n (%)	101 (9.1%)	129 (9.3%)	0.91
Dementia, n (%)	98 (8.9%)	123 (8.8%)	0.98

Resource utilization and risk during index hospitalization

	PACT-HF (N=1104)	Usual Care (N=1390)	P-value
Resource Utilization			
Acute length of stay, mean (SD) days	7.80 (6.3)	7.62 (4.9)	0.42
Resource Intensity Weight, mean (SD)	1.4 (1.2)	1.4 (0.8)	0.68
Estimated risk at discharge			
ED visits in prior 6 months, median (IQR)	2 (1-3)	2 (1-3)	0.08
LACE index, median (IQR)	12 (10-14)	12 (10-14)	0.02
Charlson comorbidity index, mean (SD)	2.4 (1.3)	2.4 (1.3)	0.60

PACT-HF Primary outcome: All-cause composite death, readmission, ED visit at 3 months

PACT-HF Primary outcome: Composite all-cause readmission or ED visit at 30 days

PACT-HF

Primary clinical outcomes

	PACT-HF (N=1104)	Usual Care (N=1390)	Hazards Ratio (95% Cl)	P-value
3-month composite all-cause death, readmission, or ED visit	545 (49.5%)	698 (50.3%)	0.99 (0.83, 1.19)	0.93
Death <u><</u> 3 months	111 (10.1%)	136 (9.8%)	1.18 (0.83, 1.68)	0.36
Readmission < 3 months	400 (36.2%)	500 (36.0%)	1.10 (0.91, 1.34)	0.32
ED visit* <u><</u> 3 months	248 (22.4%)	334 (24.0%)	0.88 (0.68, 1.15)	0.36
30-day composite all-cause readmission or ED visit	304 (27.5%)	409 (29.4%)	0.93 (0.73, 1.18)	0.54
Readmission < 30 days	225 (20.4%)	265 (19.1%)	1.23 (0.95, 1.59)	0.12
ED visit* <u><</u> 30 days	113 (10.2%)	190 (13.7%)	0.65 (0.45, 0.95)	0.03

*without hospitalization

Secondary patient reported outcomes

	PACT-HF LS Mean (95%CI) (N=606)	Usual Care LS Mean (95%CI) (N=380)	Mean Difference (95% CI)	P-Value
B-PREPARED Score (0-22)	16.52 (15.47, 17.57)	13.96 (12.92, 15.00)	2.64 (1.37, 3.92)	<0.01
CTM-3 score (0-100)	76.49 (72.00, 80.98)	70.99 (66.53 <i>,</i> 75.46)	6.10 (0.83, 11.36)	0.02
EQ-5D-5L score (0-1)				
At discharge	0.73 (0.70, 0.76)	0.55 (0.52, 0.58)	0.18 (0.14, 0.23)	<0.01
6 weeks	0.73 (0.70, 0.76)	0.67 (0.64, 0.70)	0.06 (0.01, 0.11)	0.02
6 months	0.71 (0.67, 0.74)	0.64 (0.61, 0.68)	0.06 (0.01, 0.12)	0.02
Quality Adjusted Life Years (6 months)	0.34 (0.33, 0.36)	0.34 (0.33, 0.35)	0.00 (-0.02, 0.02)	0.98

Summary – Clinical outcomes

- PACT-HF did not improve
 - Composite all-cause death, readmission, or ED visit at 3 months
 - Composite all-cause readmission or ED visit at 30 days
- Efficacy in explanatory RCTs ≠ Effectiveness in real-world settings
- Pitfalls in titrating services to risk
- Floor and ceiling effects

Summary – Patient reported outcomes

• PACT-HF improved B-PREPARED, CTM-3, EQ5D5L, but not Quality Adjusted Life Years

Strengths

- Knowledge-to-action framework
- Robust stepped wedge clinical trial design
- Pragmatic research embedded in healthcare system
- Engagement of patients, clinicians, and decision-makers
- Use of administrative databases to measure clinical and cost outcomes
- Collection of patient-reported outcomes

Limitations

- Urban hospitals only
- Did not assess the quality or duration of each episode of care
- Did not patients' adherence to discharge recommendations

Challenges of research embedded in healthcare system

- Keeping the "learning" healthcare system on track
 - Creating a research vision that is embraced across every part of the healthcare system
- Integrating care, intervention, communications across silos
- Streamlining workflow, minimizing inertia
- Preventing "contamination" of usual care

Challenges of research embedded in healthcare system

- Ensuring accountability
 - Audit and feedback
- Limited interoperability of EMRs, slow updates to claims/administrative datasets
 - Delays in access to clinical, cost outcomes

Acknowledgements for PACT-HF

Co-PI: Stuart J Connolly

Co-Investigators: Feng Xie PhD; Peter R Mitoff MD; Manish Maingi MD; Michael C Tjandrawidjaja MD; Michael Heffernan MD, PhD; Mohammad I Zia MD; Liane Porepa MD; Mohamed Panju MD; Lehana Thabane PhD; Ian D Graham MA PhD; R. Brian Haynes MD PhD; Dilys Haughton BScN MHSc; Dennis T Ko, MD, MSc

Statisticians: Shun Fu Lee PhD; Urun Erbas Oz PhD; Richard Perez MSc

Research Coordinator: Kim Simek BSc

Research Assistant: Roberta Napoleoni

Funders and Partners

- Canadian Institutes of Health Research
- Ontario's Ministry of Health and Long Term Care
- Population Health Research Institute, Hamilton, Ontario
- Institute for Clinical Evaluative Sciences, Ontario
- Department of Medicine, McMaster University, Hamilton, Ontario
- Department of Health Research Methods, Evidence, and Impact, Hamilton, Ontario
- Hamilton Health Sciences, Hamilton, Ontario
- St. Joseph's Health Centre, Toronto
- Trillium Health Partners, Mississauga, Ontario

- William Osler Health System, Brampton, Ontario
- Halton Health Care Services, Oakville, Ontario
- Michael Garron Hospital, Toronto, Ontario
- Southlake Regional Health Centre, Newmarket, Ontario
- HNHB Community Care Access Center (CCAC), Ontario
- Central West CCAC, Ontario
- Mississauga Halton CCAC, Ontario
- Toronto Central CCAC, Ontario
- Central CCAC, Ontario