The PRINCIPLE Adaptive Platform Trial for Community Treatment of COVID-19: Innovation in Trial Design and Delivery

Ben Saville, Ph.D.
Berry Consultants, Austin TX

Chris Butler, M.D.
Professor of Primary Care, University of Oxford

And PRINCIPLE Trial Team
Adaptive Platform Trials

• Master Protocol
• Focus is on the Disease
 – What is the best treatment for a unique patient with this disease?
• Typical Innovations
 – Multiple Interventions, staggered entry
 – Adaptations to accruing data
 – Frequent interim analyses (don’t wait for the end of trial!)
 – Response Adaptive Randomization (RAR)
 – Graduation/Removal, “Perpetual” trials
• Applications: Oncology, infectious disease, neurological diseases, COVID-19,...
THE CHANGING FACE OF CLINICAL TRIALS
Jeffrey M. Drazen, M.D., David P. Harrington, Ph.D., John J.V. McMurray, M.D., James H. Ware, Ph.D., and Janet Woodcock, M.D., Editors

Master Protocols to Study Multiple Therapies, Multiple Diseases, or Both

Janet Woodcock, M.D., and Lisa M. LaVange, Ph.D.

HIGH-QUALITY EVIDENCE IS WHAT WE USE TO GUIDE MEDICAL PRACTICE. The standard approach to generating this evidence — a series of clinical trials, each investigating one or two interventions in a single disease — has become ever more expensive and challenging to execute. As a result, important clinical questions go unanswered. The conduct of “precision medicine” trials to evaluate targeted therapies creates challenges in recruiting patients with rare genetic subtypes of a disease. There is also increasing interest in performing mechanism-based trials in which eligibility is based on criteria other than traditional disease definitions. The common denominator is a need to answer more questions more efficiently and in less time.

A methodologic innovation responsive to this need involves coordinated efforts to evaluate more than one or two treatments in more than one patient type or disease within the same overall trial structure.1-4 Such efforts are referred to as master protocols, defined as one overarching protocol designed to answer multiple questions. Master protocols may involve one or more interventions in multiple diseases or a single disease, as defined by current disease classification, with multiple interventions, each targeting a particular biomarker-defined population or disease subtype. Included under this broad definition of a master protocol are three distinct entities: umbrella, basket, and platform trials (Table 1 and Figs. 1 and 2). All constitute a
Potential Features of a Platform Trial

A

B

C

Control
Potential Features of a Platform Trial

A
B
C
D
E
Control
Potential Features of a Platform Trial

Harm/Futile

Control
Potential Features of a Platform Trial

Control

Harm/Futile

A

B

C

D

E

A+D

...
Potential Features of a Platform Trial

- **A** Superior
- **B** Harm/Futile
- **C** B Superior

Diagram:
- **A**
- **B**
- **C**

Control

A + D
Potential Features of a Platform Trial

A + D

B + Control new SOC

Harm/Futile

Control
Adaptive Platform Trials in COVID-19

- **PRINCIPLE**: Mild non-hospitalized but higher risk populations in UK primary care
- **REMAP-CAP**: Hospitalized ICU patients across 8 countries
- **RECOVERY**: UK-based trial in hospitalized patients not in ICU
- **ACTT(NIAID), SOLIDARITY(WHO), ISPY COVID(UCSF), ACTIV(NIH)**
PRINCIPLE: COVID-19 in Primary Care

- Most people with COVID-19 are managed in the community
 - Community treatments may have the widest reach and impact

- PRINCIPLE objective: Evaluate whether re-purposed drugs can make a difference with early intervention

- Needed a rapidly initiated trial with adaptive features
 - Ability to evaluate treatments quickly (early superiority/futility)
 - Flexibility to add treatments

- Urgency: First patient randomized < 3 weeks from initial contact with Oxford collaborators!
PRINCIPLE: COVID-19 in Primary Care

Participants:

- Aged ≥ 65 years OR ≥ 50-64 years with comorbidities, or ≥ 18 with shortness of breath or comorbidity
- Presenting in primary care within 14 days since onset of cough and/or fever during time of prevalent COVID-19 infections

Interventions:

- Multiple interventions, beginning with Hydroxychloroquine

Pragmatic open-label comparison:

- Usual care without study drug
Primary Endpoint

- Two co-primary endpoints
 1. Time to self-reported recovery within 28 days
 2. Hospitalization/Death (binary)
- Gate-keeping approach for primary analysis
- Compare interventions to Usual Care in open label, pragmatic trial
- Primary Analysis Population
 - SARS-CoV-2 positive swab
 - Trial enrolls participants with COVID symptoms, regardless of swab
 - Secondary analysis on overall population
Primary Analysis

1. Time to self-reported recovery
 – Bayesian piecewise exponential model

2. Hospitalization/Death (binary)
 – Logistic regression model

• Features of both models
 – Adjust for covariates: age, comorbidities, COVID swab result, vaccination status
 – Adjust for time trends (changing population/disease)
Primary Analysis: Time to Recovery

Model time to recovery T_{ij} as piecewise exponential with hazard λ_{ijs} for subject i in arm j at time interval s:

$$\lambda_{ijs} = \exp(\gamma_s + \theta_j + x_i'\beta + \eta_{t(i)})$$

- γ_s is intercept, θ_j is treatment effect, x_i are covariates for subject i
- $\eta_{i(t)}$ is a function of time of randomization from start of study
 - 2nd order normal dynamic linear model (NDLM)
 - Bayesian hierarchical smoothing over 2-week intervals
- Statistical model allows comparison of treatment arms to non-concurrently randomized controls
 - Gap bridged by overlap between multiple treatment arms
Adaptive Platform Design

- Expected accrual: 30-250 participants/week
- Weekly, bi-weekly, or monthly interims depending on speed of enrollment
- Interim analysis for superiority of intervention
 - Superiority time to recovery: Bayesian posterior probability of superiority ≥ 0.99
 - Superiority hospitalization/death: Bayesian posterior probability of superiority ≥ 0.975
- Interim analysis for futility
 - Drop intervention if Pr(Meaningful benefit) < 0.01
Participant Allocation

- Response adaptive randomization
 - Allocates more subjects to interventions with better outcomes
 - Fixed allocation to Usual Care (open label)
- If intervention X is superior to Usual Care on one or both co-primary endpoints, results announced
 - X is removed from trial and can be adopted into Usual Care
 - Future interventions compared to Usual Care (which may be evolving)
Virtual Trial Simulation

- Key to adaptive design is to pre-specify adaptations
- Simulations used as a tool for trial design
 1. Explore/calibrate adaptive algorithm on single example trials
 2. Evaluate/calibrate performance under a wide range of plausible scenarios
- Simulations completed and decision rules finalized prior to the first interim analysis
Virtual Trial Simulation

Simulated (Example) Interim data

Recovery Data

<table>
<thead>
<tr>
<th></th>
<th>Enrolled</th>
<th>Complete</th>
<th>Recovered</th>
<th>Exposure Days</th>
<th>Recoveries Per Day</th>
<th>Estimated Hazard (95% interval)</th>
<th>Estimated HR</th>
<th>Estimated Median Time to Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC</td>
<td>401</td>
<td>383</td>
<td>334</td>
<td>4861</td>
<td>0.069</td>
<td>0.07</td>
<td>1.392 (1.182, 1.637)</td>
<td>7.63</td>
</tr>
<tr>
<td>HCQ</td>
<td>206</td>
<td>206</td>
<td>196</td>
<td>1933</td>
<td>0.101</td>
<td>0.086</td>
<td>1.129 (0.949, 1.34)</td>
<td>9.28</td>
</tr>
<tr>
<td>Azith</td>
<td>198</td>
<td>177</td>
<td>165</td>
<td>2032</td>
<td>0.081</td>
<td>0.079</td>
<td>1.105 (0.836, 1.416)</td>
<td>9.48</td>
</tr>
<tr>
<td>Doxy</td>
<td>63</td>
<td>53</td>
<td>50</td>
<td>619</td>
<td>0.081</td>
<td>0.078</td>
<td>1.105 (0.836, 1.416)</td>
<td>9.48</td>
</tr>
<tr>
<td>Total</td>
<td>868</td>
<td>819</td>
<td>745</td>
<td>9445</td>
<td>0.079</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hospitalization Data

<table>
<thead>
<tr>
<th>Hospitalizations</th>
<th>28 Day Completers</th>
<th>Observed Hosp. Rate</th>
<th>Est. Hosp. Rate</th>
<th>Pr(95% interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>356</td>
<td>0.0478</td>
<td>0.0443 (0.0268, 0.0579)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>206</td>
<td>0.0243</td>
<td>0.0289 (0.0105, 0.0567)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>142</td>
<td>0.0141</td>
<td>0.0151 (0.0032, 0.0262)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>0.0741</td>
<td>0.0467 (0.0099, 0.1121)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>731</td>
<td>0.0356</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intervention Status

- SuccessOnTTR/utilityOnHosp: *Announced*
- Enrolling

Observed Patient Recoveries

Recovery Inferences

<table>
<thead>
<tr>
<th></th>
<th>Pr(Superiority)</th>
<th>Pr(Meaningful Effect)</th>
<th>Pr(Best)</th>
<th>Randomization Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC</td>
<td>0.8423</td>
<td>0.398</td>
<td>0</td>
<td>0.33</td>
</tr>
<tr>
<td>HCQ</td>
<td>0.98</td>
<td>0.763</td>
<td>0</td>
<td>0.98</td>
</tr>
<tr>
<td>Azith</td>
<td>0.5267</td>
<td>0.2047</td>
<td>0</td>
<td>0.5267</td>
</tr>
<tr>
<td>Doxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Median Time To Recovery Estimates

Hazard Ratio Estimates

- SOC: 7.6
- HCQ: 9.3
- Azith: 9.5
- Doxy: 10.4
• The implementation of platform trials requires several teams
 – *Statistical Analysis Committee (SAC)*: small unblinded group that performs the interim analyses
 – Results provided to a Data Monitoring Committee
 – Strict firewalls between unblinded & blinded individuals
• Emphasis on timely data collection & cleaning (Oxford data team)
• The primary analysis model incorporates data from all available treatment arms
 – Topline model results are provided to Trial Management Group
 – Caution needed to preserve integrity of ongoing interventions
Inverse care law

THE INVERSE CARE LAW

JULIAN TUDOR HART
Glyncorrog Health Centre, Port Talbot, Glamorgan, Wales

Summary The availability of good medical care tends to vary inversely with the need for it in the population served. This inverse care law operates more completely where medical care is most exposed to market forces, and less so where such exposure is reduced. The market distribution of medical care is a primitive and historically outdated social form, and any return to it would further exaggerate the maldistribution of medical resources.

Interpreted either as evidence of high morbidity among high users, or of disproportionate benefit drawn by them from the National Health Service. By piling up the valid evidence that poor people in Britain have higher consultation and referral rates at all levels of the NHS, and by differences in mortality and other indices, it is somewhat to Titmuss’s opinion that before there was no significant gradient of medical care in the classes.

Class gradients in the medical care system to this view. Of the social classes have higher death rates among their members, but they are increasing in the higher social classes. Whether in the class than among the lower social classes is a question of how much is the relationship between social class and death rates is due to the opportunities that are presented by the health service to the different social classes.

Inverse research participation law

Access to research is often inversely proportional to a participants’ potential contribution and to where the research findings should be most applicable.
Innovation in Subject Recruitment

<table>
<thead>
<tr>
<th>“Patient comes to the research”</th>
<th>“Research taken to the patient”</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP practices set up as sites: requires contract, GCP training</td>
<td>UK wide access through website: clinicians, NHS 111, care homes, patients themselves</td>
</tr>
<tr>
<td>Paper, face-to-face consent</td>
<td>Online consent</td>
</tr>
<tr>
<td>Study clinician confirms eligibility</td>
<td>Central eligibility check using summary care record or information form patient and GP</td>
</tr>
<tr>
<td>Medicine stored at every study site and issued to patient by study clinicians</td>
<td>Medicine and study materials couriered to patients home</td>
</tr>
<tr>
<td>Study clinician does sampling</td>
<td>Self swabbing</td>
</tr>
<tr>
<td></td>
<td>Follow up by study team, online, telephone, trial partner, routinely collected data extract</td>
</tr>
</tbody>
</table>

The first truly ‘democratic’, nationally-inclusive, trial of an acute condition in the UK
Why no placebo?

- The study aimed to determine if there is an advantage to adding intervention into NHS care, rather than whether intervention is better than a placebo intervention.
- As placebo intervention is not part of NHS care, adding it in would not have allowed us to answer the study question.
- Pragmatic studies should ensure the comparator group is as close to usual care as possible.
- We acknowledge that this trial design does not allow us to understand the mechanisms behind any observed effect, but is the best design to find out what would happen if the treatment was used in the real world.
Map of general practices that have recruited at least one participant to PRINCIPLE
COVID-19 Therapeutic Alert

CEM/CMO/2021/003

28 January 2021

Antimicrobials (azithromycin and doxycycline) Not Beneficial in the Management of COVID-19 (SARS-CoV-2) Positive Patients

Recommendation

It is recommended that:

Azithromycin should NOT be used in the management of confirmed or suspected COVID-19 infection either within primary care or in hospitalised patients, unless there are additional indications for which its use remains appropriate (see Product Details).

Doxycycline should NOT be used in the management of confirmed or suspected COVID-19 infection within primary care, unless there are additional indications for which its use remains appropriate (see Product Details).
Budesonide Results

Background:

- Budesonide arm stopped on 31 March 2021: evidence to be certain that budesonide improves time to recovery
- Results presented here and in preprint are using most recent data from 25th March 2021
- These results are not yet complete and not peer reviewed; final results May 2021

Numbers of participants in the interim analysis

- By 25th March 2021, PRINCIPLE trial had enrolled 4663 participants with suspected COVID-19.
- Of these, 2617 (56.1\%) tested SARS-CoV-2 positive and contributed data to this interim budesonide primary analysis; 751 budesonide, 1028 usual care and 643 to other interventions
Budesonide Results

Primary SARS-CoV-2 Positive Population Analysis
Time To First Reported Recovery
Budesonide vs. Usual Care

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Sample Size</th>
<th>Model Results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median Hazard Ratio (95% CI)</td>
</tr>
<tr>
<td></td>
<td>Inhaled Budesonide</td>
<td>Usual Care</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>751</td>
<td>1028</td>
<td>1.208 (1.076, 1.356)</td>
</tr>
</tbody>
</table>

Median Estimated Benefit in Median Time To Recovery in Days* (95% CI)

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Median Estimated Benefit in Median Time To Recovery in Days* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (Population-averaged)</td>
<td>3.011 (1.134, 5.410)</td>
</tr>
</tbody>
</table>

* Numbers are reported in terms of benefit – i.e. positive numbers represents amount of reduction
Primary SARS-CoV-2 Positive Population Analysis

Time To First Reported Recovery

Budesonide vs. Usual Care

<table>
<thead>
<tr>
<th>Days from randomisation</th>
<th>Inhaled Budesonide</th>
<th>Usual Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimated Hazard Ratio (95% BCI)\(^1\) = 1.21 [1.08 to 1.36]
Pr(Superiority)\(^2\) = 0.999

\(^1\) Estimated hazard ratio derived from a Bayesian piecewise exponential model adjusted for age and comorbidity at baseline, with 95% Bayesian credible interval. Hazard ratio > 1 favors inhaled budesonide.

\(^2\) Probability of superiority, treatment superiority is declared if Pr(superiority) ≥ 0.99 versus Usual Care

<table>
<thead>
<tr>
<th>Time to recovery (days), median(IQR)</th>
<th>Inhaled Budesonide</th>
<th>Usual Care</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.0 (5.0 to 27.0)</td>
<td>14.0 (6.0 to .)</td>
</tr>
</tbody>
</table>
Summary

Those with COVID-19 and basically eligible for ‘flu vaccine and if given inhaled budesonide in addition to usual NHS care:

- Will recover around 3 days sooner
- Will feel less unwell while recovering
- Once recovered, will more often remain recovered
- Will have a greater sense of well-being at 14 days and at 28 days follow up
- About a quarter are still not recovered by 28 days

Trend favours reduced hospital admission, but caution with this preliminary finding
COVID-19 Therapeutic Alert

CEM/CMO/2021/011

12 April 2021

Inhaled Budesonide for Adults (50 Years and Over) with COVID-19

Recommendation

Inhaled budesonide is not currently being recommended as standard of care but can be considered (off-label) on a case-by-case basis for symptomatic COVID-19 positive patients aged 65 and over, or aged 50 or over with co-morbidities, in line with the published Interim Position Statement.

Supporting Evidence

After completing an interim analysis, the PRINCIPLE trial has reported that inhaled budesonide (800 micrograms taken twice daily, for up to 14 days) can reduce recovery time by a median of 3 days in symptomatic COVID-19 positive patients aged 65 and over, or aged 50 or over with co-morbidities. A benefit in self-reported early sustained recovery at 28 days was also identified.

The analysis has not established whether budesonide can reduce hospital admissions or reduce mortality.

The interim results from PRINCIPLE build on the findings of the STOIC trial Phase II study on inhaled budesonide. This study suggests that early administration of inhaled budesonide reduces the likelihood of needing urgent medical care and reduces time to recovery following early COVID-19 infection.

Eligibility

In summary, potentially eligible patients will:

- Have COVID-19 symptoms, with symptom onset within the last 14 days, AND
- Be COVID-19 positive, confirmed by a recent polymerase chain reaction (PCR) test, AND
- Be aged 65 or over, or aged 50 or over with one or more co-morbidities consistent with the long-term conditions referenced in the flu vaccine list

Please see the published Interim Position Statement for more details on the specific inclusion and exclusion criteria.
4956 Randomized, 2770 GP practices

Where to next for PRINCIPLE?

Need answers for:

- colchicine (recovery)
- favipiravir
- Further repurposed and viral specific drugs

https://www.principletrial.org
EudraCT number: 2020-001209-22
ISRCTN registry: ISRCTN86534580

PRINCIPLE is funded by UK Research and Innovation & the Department of Health and Social Care through the National Institute for Health Research.
PRINCIPLE Collaborative Group

Co-Chief Investigator
Christopher C Butler FD Richard Hobbs

Statistics (Oxford)
Victoria Harris
Jill Mollison
Ushma Galal
Milensu Shanyinde

Statistics (Berry Consultants)
Cora Allen-Savietta
Michelle Detry
Joe Marion
Nick Berry
Mark Fitzgerald
Christina Saunders

Trial Management Group
Julie Allen
Monique Andersson
Mona Bafadhel
Emily Bongard
Aleksandra Borek
Christopher C Butler
Simon de Lusignan
Jienchi Dorward
Philip H Evans
Filipa Ferreira
Oghenekome Gbinigie
Gail Hayward
Susan Hopkins
Mona Koshkouei
Martin J Llewelyn
Emma Ogburn
Mahendra G. Patel
Duncan Richards
Dan Richards-Doran
Heather Rutter
Benjamin R. Saville
Hannah Swayze
Nicholas PB Thomas
Manasa Tripathy
Sarah Tonkin-Crine
Jared Robinson
Sharon Tonner
Oliver Van Hecke
Ly-Mee Yu

Trial Management
Sarah Barrett
Steph Brann
Jenny Brooks
Rebecca Edeson
Joris de Henau
Nicky Maeder
Micheal McKenna
Clare Bateman
Nargis Begum
Kerry Dempster
Rhianna Edwards
Rebecca Edeson
Aimee Maloney
Jared Robinson

Clinical Team
Heather Rutter
Bernadette Mundey
Beth Thompson
Karen Madronal
Irene Noel
Belinda Ianson

IT
David Judge
Rui Zhao

Data
Lazarina Engonidou
Karen Morecroft
Jenna Grabey
David Watt

Data Monitoring Committee
Deborah Ashby (Chair)
Simon Gates
Patrick White
Nick Francis
Gordon Taylor

Trial Steering Committee
Carol Green
Paul Little (Chair)
Matthew Sydes
Phil Hannaford
Tim Mustill