

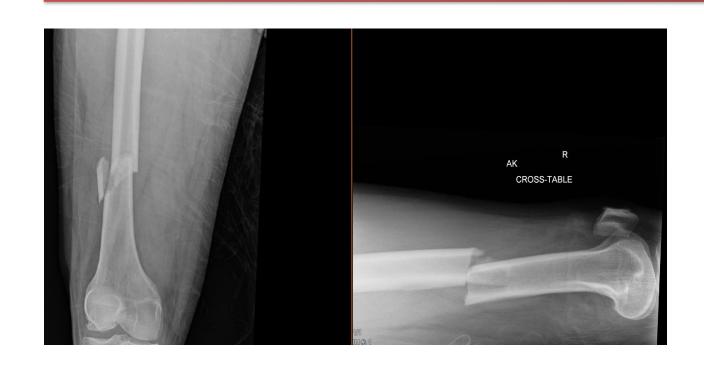
PREVENT CLOT: Is Aspirin Ok for Ortho Trauma Patients?

Robert V. O'Toole, MD

Hansjörg Wyss Medical Foundation Professor in Orthopaedic Trauma
R Adams Cowley Shock Trauma Center
Department of Orthopaedics
University of Maryland School of Medicine

Industry Conflicts

<u>Consultant</u> Stryker, Lincotek, Imagen


Research Support
PCORI, DOD, AO

Acknowledgments

Nathan O'Hara, PhD, MHA METRC team Partners

<u>Case 1</u>: Young, MVC, Bilateral Femurs- Hypoxia in OR – Large PE

Case 2: Young, MVC, Bilateral Femurs- Arrest in OR – Large PE

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JANUARY 19, 2023

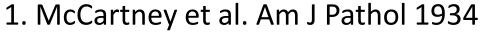
VOL. 388 NO. 3

Aspirin or Low-Molecular-Weight Heparin for Thromboprophylaxis after a Fracture

Major Extremity Trauma Research Consortium (METRC)*

PREVENT CLOT

- 1. VTE in Ortho Trauma
- 2. Initial Work
- 3. PCLOT Design
- 4. Main Results
- 5. What's next?



Trauma is a risk factor for VTE ~ 100 years

1934: Lower extremity injury = Risk Factor¹

1967: 35% by venogram²

- Injured and uninjured limbs
- Observed within 24 hours
- Most asymptomatic

2. Freerk et al Arch Surg 1967

Volume 331

DECEMBER 15, 1994

Number 24

A PROSPECTIVE STUDY OF VENOUS THROMBOEMBOLISM AFTER MAJOR TRAUMA

WILLIAM H. GEERTS, M.D., KAREN I. CODE, R.N., RICHARD M. JAY, M.D., ERLUO CHEN, M.B., M.P.H., AND JOHN PAUL SZALAI, Ph.D.

VTE Common After Trauma³
349 patients (no prophylaxis, venography)

58% DVT (18% proximal)

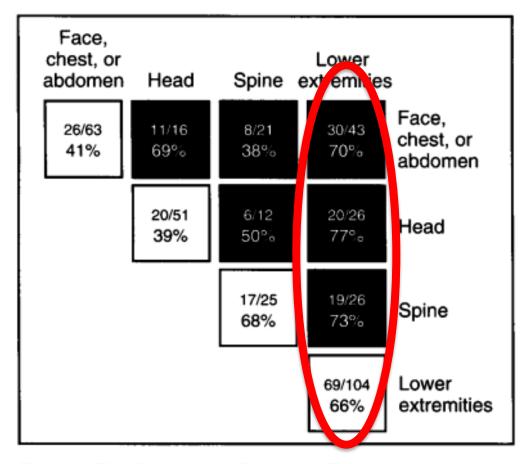


Figure 1. The Frequency of Deep-Vein Thrombosis among 349 Patients with One or More Major Injuries.

Risk Factors for VTE in Trauma (n=450,375)⁴

- Age > 40
- LE Fracture AIS >2
- Head injury
- Venous injury
- Major Surgery

Reported Event Rate Varies⁵

DVT: 0.36%⁴ to 58%³

Why?

Diagnostic protocols

Different patient populations

Type of prophylaxis

- 5. Haut et al. J Trauma 2009
- 4. Knudson et al. Annals Surg 2004
- 3. Geerts et al. NEJM 1994

Mechanical and/or Chemical Prophylaxis

VTE Trauma: Cochrane Review (2013)⁶

<u>DVT:</u>

Prophylaxis (chemical or mechanical) Reduces DVT (RR ~0.50)

LMWH better than UH (RR 0.68)

Chemical AND mechanical better (RR 0.34)

Mechanical and/or Chemical Prophylaxis

VTE Trauma: Cochrane Review (2013)⁶

PE & Death

Effect Less Clear (lower event rate, less precision)

Trend the Same

CHEST

Supplement

ANTITHROMBOTIC THERAPY AND PREVENTION OF THROMBOSIS, 9TH ED: ACCP GUIDELINES

Prevention of VTE in Orthopedic Surgery Patients

Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines

Yngve Falck-Ytter, MD; Charles W. Francis, MD; Norman A. Johanson, MD; Catherine Curley, MD; Ola E. Dahl, MD; Sam Schulman, MD, PhD; Thomas L. Ortel, MD, PhD; Stephen G. Pauker, MD; and Clifford W. Colwell Jr, MD

CLINICAL MANAGEMENT UPDATE

The Journal of TRAUMA® Injury, Infection, and Critical Care

Practice Management Guidelines for the Prevention of Venous Thromboembolism in Trauma Patients: The EAST Practice Management Guidelines Work Group

Frederick B. Rogers, MD, Mark D. Cipolle, MD, PhD, George Velmahos, MD, PhD, Grace Rozycki, MD, and Fred A. Luchette. MD

J Trauma. 2002;53:142-164.

Venous Thromboembolism Prophylaxis in Orthopaedic Trauma Patients: A Survey of OTA Member Practice Patterns and OTA Expert Panel Recommendations

H. Claude Sagi, MD, FACS,* Jaimo Ahn, MD, PhD,‡ David Ciesla, MD,† Cory Collinge, MD,§ Cesar Molina, MD,|| William T. Obremskey, MD,§ and Oscar Guillamondegui, MD||, the Orthopaedic Trauma Association Evidence Based Ouality Value and Safety Committee

 VTE: well-recognized, potentially fatal complication after orthopaedic trauma

 Guidelines recommend <u>LMWH</u> for VTE prophylaxis

Aspirin in Arthroplasty

THA/TJR: High risk for VTE

(DVT up to 57% despite prophylaxis⁸)

Aspirin: Now most common VTE prophylaxis⁷

2009-2019 (70,000+ THA, 35,000+ TKR)

Overall: 42% (THA) 50% (TKR)

High Risk: 35% (THA) 47% (TKR)

7. Singh et al. J Arthrop 2023

8. Singh et al. JBJS 1984

Aspirin in Arthroplasty

ASA vs. LMWH: Acceptable Risk

Meta-Analyses: Aspirin Acceptable

13 RCT, 6000 patients⁷

<u>Large Propensity Matched Studies</u>: Aspirin Acceptable & Safe 100,000+ THA/TJA

- 7. Singh et al. J Arthrop 2023
- 8. Matharu JAMA Int Med 2020

What about Aspirin in Ortho Trauma?

Aspirin in Trauma?

Appealing Re Cost (high proportion uninsured)
Appealing re PO vs SC

Concerning because you can't "turn it off"

Does it prevent VTE in this population? Are there bleeding/safety risks?

Aspirin in Trauma?

No modern high-quality comparison of ASA vs LMWH in orthopaedic trauma patients

2. Initial Work

P-CLOT Origins: STC

Idea: Deb Stein & Ted Manson

Pilot Data

Complication Profile of LMWH

AO Grant 2014 (PI: Johal, \$15K) 9,10

ADAPT trial (Bryce Haac MD)

Single site, RCT (n=329)8

Primary outcome:

Composite: Bleeding, SSI, DVT, PE, and Death

ADAPT Trial

Primary Outcome:

LMWH:

50.4% (95%CI: 48-53%) probability of superiority

"... evaluation of ... clinical endpoints will require a considerably larger sample"

Demonstrated feasibility

Similar inpatient compliance¹¹ Similar post-discharge adherence¹²

Patient Centered Outcomes Research

PCOR

Focus Groups

DCE⁹

Discrete Choice Experiment (DCE)

Quantitative technique measure patient preferences

Surveys: chose the best option

Relative importance of attributes

Quantify: willingness to pay

Which med would you prefer?

	Medication A	Medication B
Type of daily medication	Oral pill	Needle injection
What will it cost you	\$100	\$50
Possible side effect	None	Bruising on leg
Chance that you will have a bleeding complication and need a blood transfusion	10 out of 1000	100 out of 1000
Chance that you will have wound complication and need another operation	50 out of 1000	100 out of 1000
Chance that you will have a blood clot and have to take medications for 6 months	20 out of 1000	10 out of 1000
Chance of death due to a pulmonary embolism	1 out of 1000	1 out of 1000
Check one	Prefer Medication A	Prefer Medication B

Discrete Choice Experiment (DCE)

Patients prefer PO

Switch to SC w/ Absolute Risk Reduction of

Bleeding: 7%

Wound complication: 4.5%

VTE: 1.2%

Death from PE: 0.07%

Patients Don't Want to Die

DCE Changed PCLOT

Patients strongly prefer ASA^{1,2} (pill and cost) if acceptable performance re death

Changed primary outcome

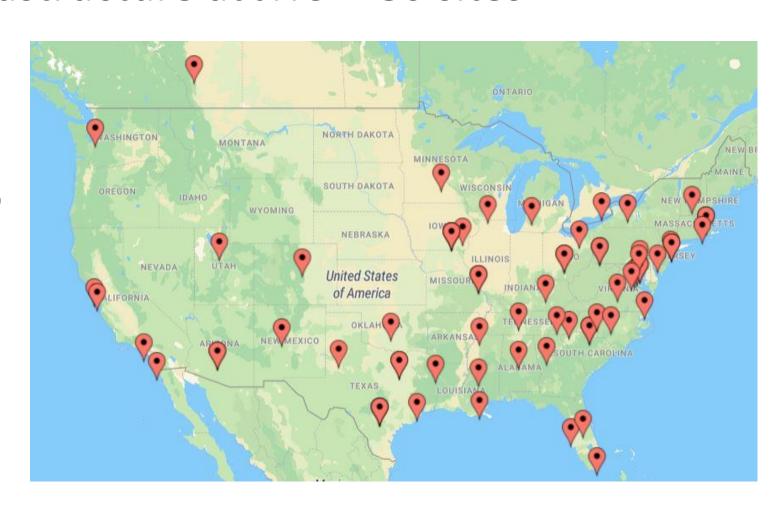
13. Haac BE, O'Hara NN, Mullins CD, et al.. BMJ Open 2017

14. Wong A, Kraus PS, Lau BD, et al. J Hosp Med 2015

3. PCLOT DESIGN

Aspirin vs Low Molecular Weigh Heparin for Thromboprophylaxis: A Randomized Clinical Trial of Over 12,000 Orthopaedic Trauma Patients

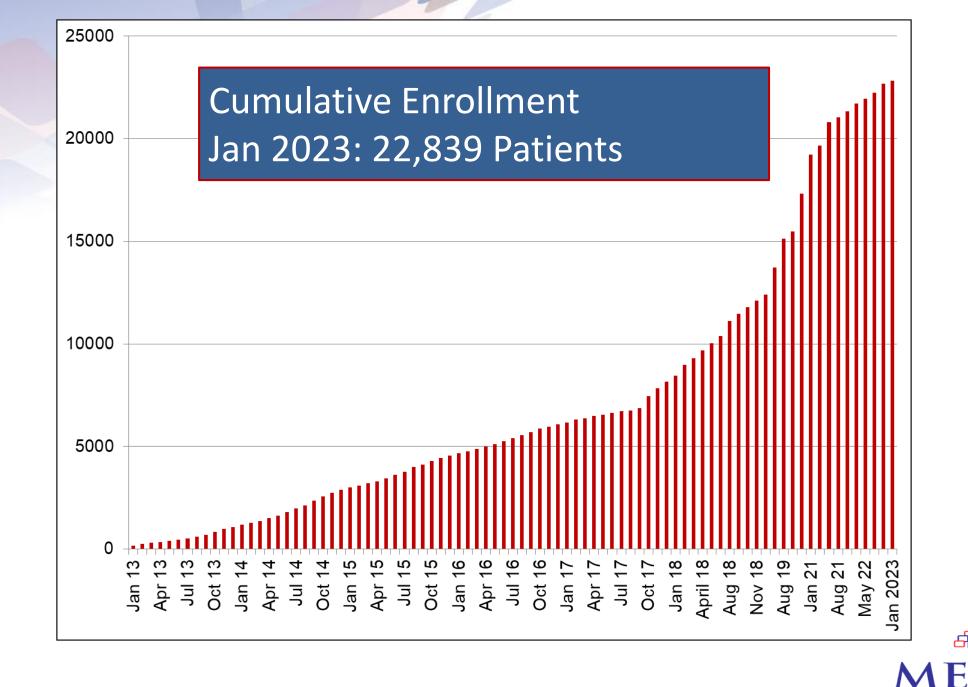
Robert V. O'Toole for METRC

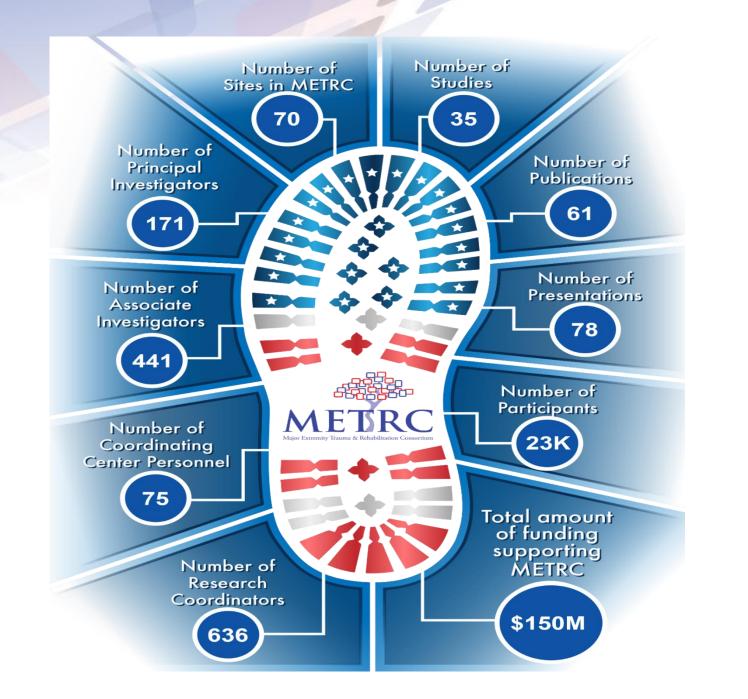

What is METRC?

Research Infrastructure at JHU + 80 sites

Founded 2009

Director: Ellen MacKenzie PhD


Clinical Chair: Mike Bosse, MD



METRC Accomplishments

- **34** Prospective Studies
 - 21 "done"
 - 14 ongoing
- 4 Retrospective Studies

- **0** Failed Studies
 - All studies have yielded publishable results
 - High quality and high value

P-CLOT DESIGN

Funding

PCS-1511-32745

Study Management Team

UMD

- Robert O'Toole
- Deborah Stein
- Nathan O'Hara
- Yasmin Degani

METRC CC

- Renan Castillo
- Katherine Frey
- Tara Taylor
- Anthony Carlini
- Kuladeep Sudini
- Elias Weston-Farber
- Brianna Fowler

Protocol Committee

Orthopaedics

- Michael Bosse
- Reza Firoozabadi
- Joshua Gary
- Leah Gitajn
- Conor Kleweno
- Theodore Manson
- William Obremskey
- Robert O'Toole
- Jessica Rivera
- Gerard Slobogean
- Heather Vallier

Research Coordinators

- Mary Breslin
- Martha Holden
- Andres Rodrigue

Trauma

- Elliott Haut
- Bryan Cotton
- Jeffrey Claridge
- Joseph Cuschieri
- Oscar Guillamondegui
- Bryce Haac
- Flliott Haut
- Bellal Joseph
- Stephanie Savage
- Deborah Stein

Stakeholders/Stakeholder Engagement Experts

- Randy Fenninger
- Stephen Fisher
- Debra Marvel
- Daniel Mullins
- Stephen Wegener

Research Methods

- Anthony Carlini
- Renan Castillo
- Katherine Frey
- Tara Taylor
- Nancy Kass
- Nathan O'Hara
- Daniel Scharfstein
- Rachel Seymour

Content Experts

- Mark Crowther
- Samuel Goldhaber
- Michael Streiff

Funders

- Iris Giggetts
- Sarah Philbin
- Thuy-Vy Do
- Natalia Lapinskaya

Adjudication Committee Members

Outcomes

- Elliott Haut
- Gregory Jurkovich
- Ajai Malhotra

Eligibility

- Matthew Reidel
- Lucas Marchand
- Christopher Lee

Stakeholder Committee Members

- Debra Marvel
- Eileen Flores
- Steven Herndon
- Katherine Joseph
- Jeremy Palmer
- Peter Thomas
- Dave Wells

- Sara Wyen
- Larry Cutsail
- Stephen Fisher
- Randolf Fenninger
- Kevin Bozic
- Nicole Stassen
- Breazeale Stephen

21 Participating Centers

- Carolinas Medical Center
- Darthmouth-Hitchock Medical
- Foothills Medical Center
- Hamilton General Hospital
- Harborview Medical Center
- Indiana University Health Methodist Hospital
- Harvard Orthopaedic Trauma Service
- The MetroHealth System

- R Adams Cowley Shock Trauma
- Rhode Island Hospital
- Ryder Trauma Center
- San Antonio Military Medical Center
- University of Arizona
 Tucson
- University of Mississippi Medical Center
- University of Tennessee
 Health Sciences Center

- University of Texas Health
 Sciences Center
- Vanderbilt Medical Center
- Wake Forest Health
 Sciences
- Allegheny General Hospital
- Inova Fairfax Hospital Falls
 Church
- University of Wisconsin

Participating Centers

21 Centers

120+ Ortho & Trauma Investigators

175+ Research Coordinators

12,000+ patients

PREVENT CLOT

PREVENT CLOT:

Effectiveness and **safety** of ASA vs LMWH for thromboprophylaxis in ortho trauma

PREVENT CLOT Study Hypothesis

Primary Hypothesis:

All cause mortality is <u>non-inferior</u> with ASA compared to LMWH in ortho trauma patients.

Methods

FDA Status

FDA: IND Exempt 133628

Aspirin is not FDA approved for this indication

Study Design

Pragmatic RCT

Designed from hospital policy perspective

Protocol Paper¹

Study Design: Inclusion/Exclusion Criteria

Inclusion Criteria

- Adult trauma patients (18+)
- Plan for prophylaxis
- Operative extremity fracture proximal to metatarsal or carpal bones or
- pelvis or acetabulum fracture, treated operatively or non-operatively

Exclusion Criteria

- >48 hrs to trauma center
- 3+ doses of thromboprophylaxis prior to consent
- Dx of venous thromboprophylaxis in prior 6 m
- On therapeutic anticoag or had a chronic blood clotting disorder
- COVID + patients

Study Design

- Randomization on 1:1 ratio, stratified by treatment site
- Open label (Patients, clinicians NOT blinded)

• Treatments:

LMWH: 30 mg subcutaneously, 2x day

ASA: 81 mg orally, 2x day

Duration/Indication based on hospital protocols

Study Design: Outcomes

Outcomes evaluated up to 90 days after randomization

Primary outcome: All cause mortality

<u>Secondary Outcomes</u>: <u>Secondary Safety Outcomes</u>:

PE related death Bleeding events

Non-fatal PE Wound complications

DVT Surgical site infections

Study Design: Outcomes

Changed Primary Outcome:

Death Due to PE ———— All Cause Mortality

Study Design: Analysis

Statistical Analysis Plan

Primary outcome: Intent to treat (ITT)

Treatment-specific Kaplan-Meier estimators

Assess non-inferiority with a 2-sided confidence interval

2 analysts wrote independent code all results

Secondary outcomes: Cumulative incidence function w death as a competing risk

Participants censored at last known clinical encounter.

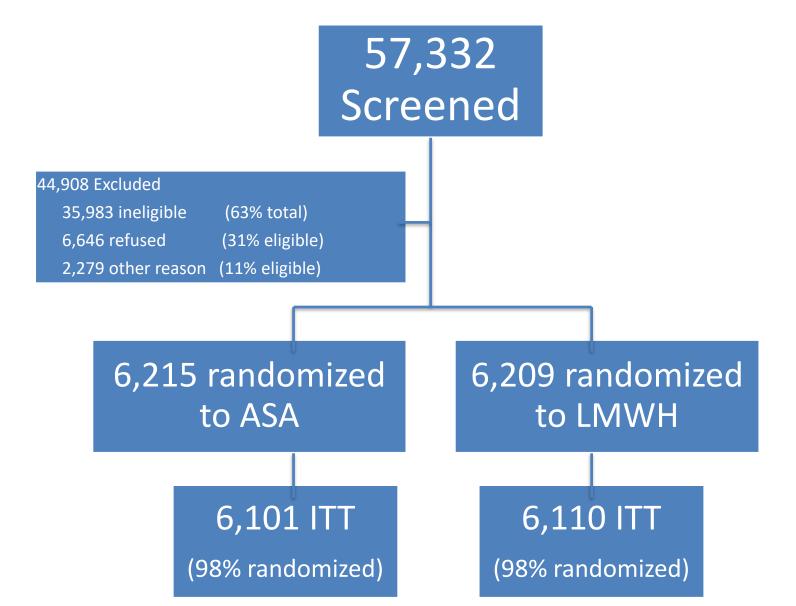
Report risk differences and 95% CI, no hypothesis testing

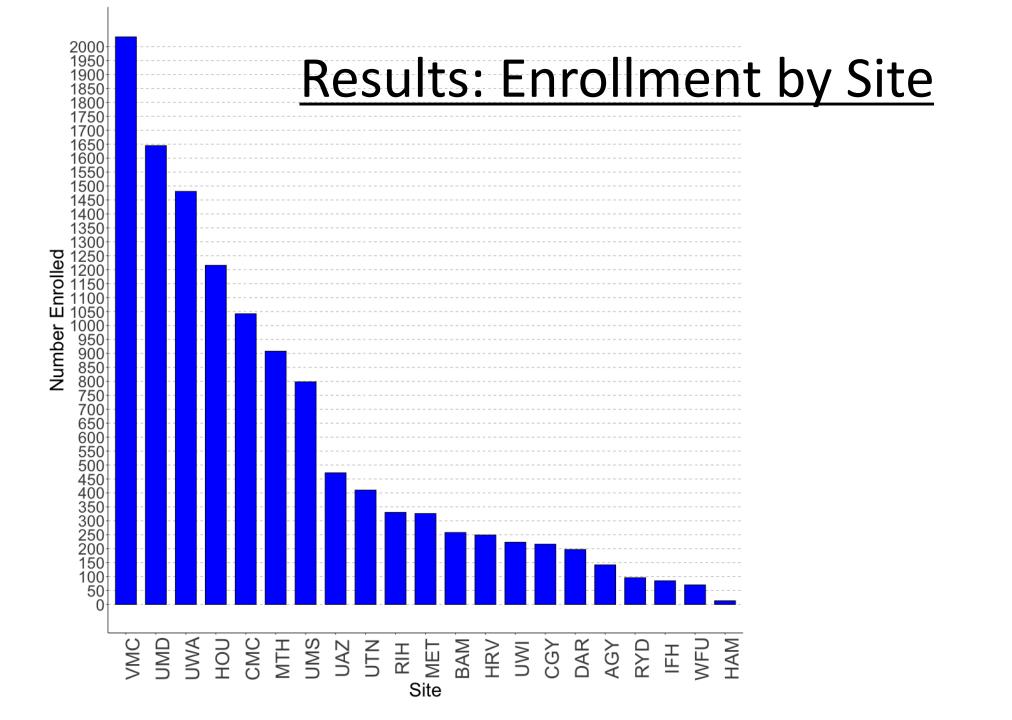
Study Design

Primary Outcome:

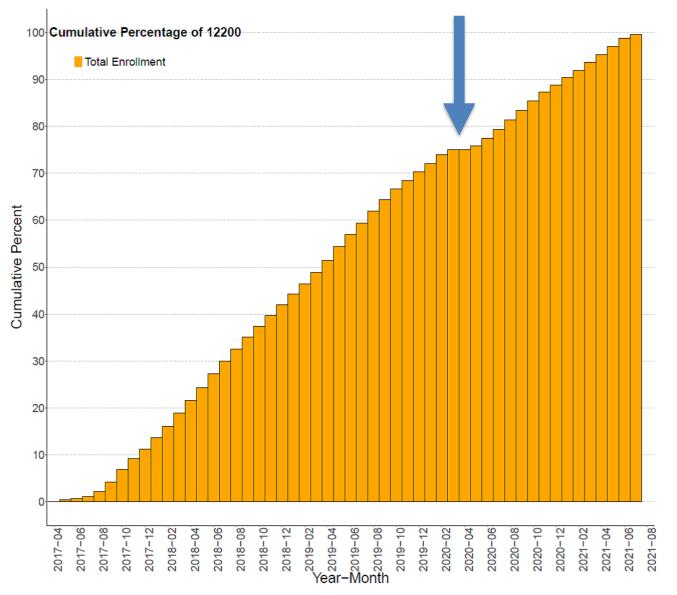
Sensitivity analysis: per protocol

Adherence:


- 1) receipt of 80% of in-hospital doses AND
- 2) discharged on allocated medication (if applicable)


4. MAIN RESULTS

Results: Enrollment and Follow-up



Results: Enrollment Over Time

Enrollment: Apr 2017-Aug 2021

(~4.5 Years)

Final follow-up: Jan 2022

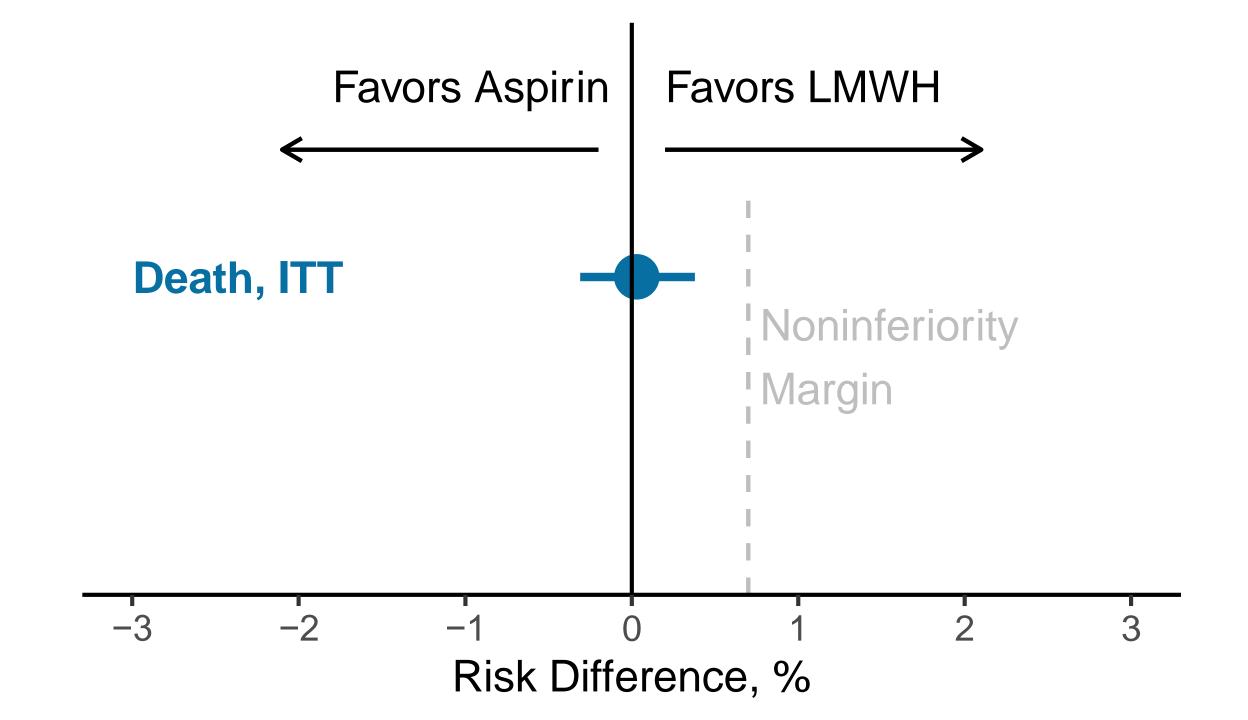
Results: Balance Between Groups

	ASA (N = 6101)	LMWH (N = 6110)
Male	63%	62%
Age (yrs)	44.5	44.7
ISS - median (IQR)	9 (4-10)	9 (4-10)
>15	13.7%	14.2%
Injury Region		
LE fx only	67.4%	66.6%
UE fx only	11.9%	12.2%
UE & LE fx	20.6%	21.1%

	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
all cause mortality			

	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
all cause mortality	0.73% (n=45)		

	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
all cause	0.73%	0.78%	
mortality	(n=45)	(n=47)	

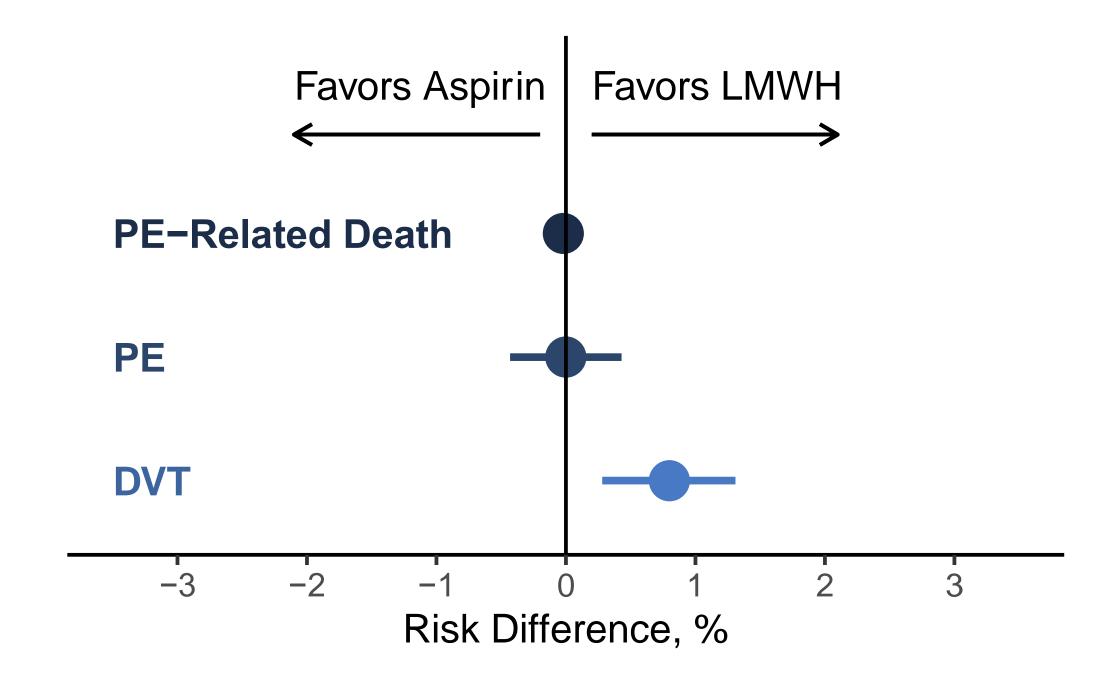

	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
all cause mortality	0.73% (n=45)	0.78% (n=47)	0.05% (-0.27 to 0.38%) P-value <0.001

Primary Result: All Cause Mortality (per protocol)

	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
all cause mortality			

Primary Result: All Cause Mortality (per protocol)

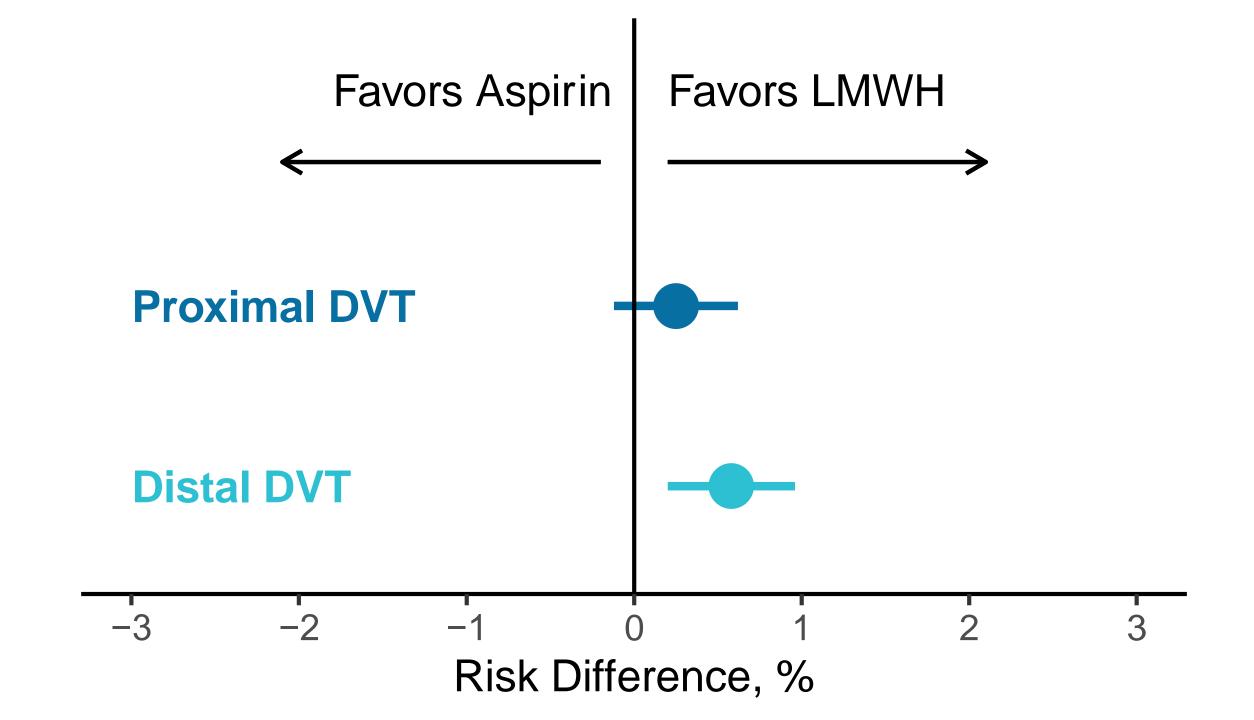
	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
all cause	0.72% (n=38)	0.75%	0.03%
mortality		(n=41)	(-0.31 to 0.38%)



	LMWH (N = 6110)	ASA (N = 6101)	Difference (95% CI)
death due to PE			
PE			
DVT			

	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
death due to PE	0.08%	0.07%	-0.02%
	(n=5)	(n=4)	(-0.12% to 0.08%)
PE			
DVT			

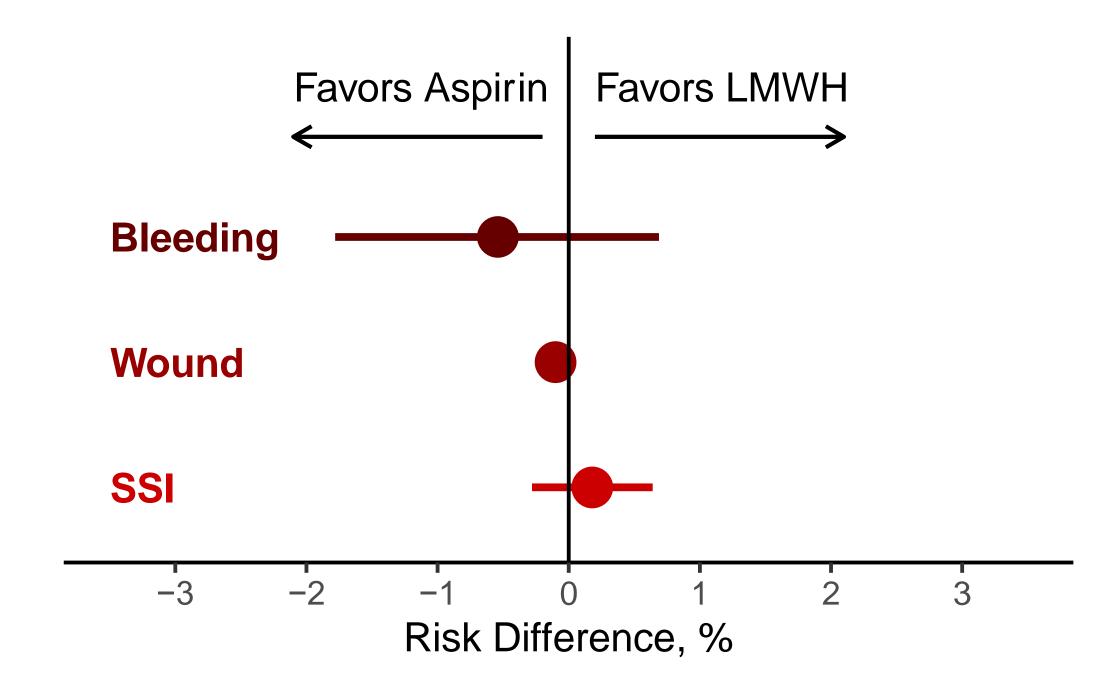
	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
death due to PE	0.08%	0.07%	-0.02%
	(n=5)	(n=4)	(-0.12% to 0.08%)
PE	1.49%	1.49%	0.0%
	(n=90)	(n=90)	(-0.43% to 0.43%)
DVT			


	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
death due to PE	0.08%	0.07%	-0.02%
	(n=5)	(n=4)	(-0.12% to 0.08%)
PE	1.49%	1.49%	0.0%
	(n=90)	(n=90)	(-0.43% to 0.43%)
DVT	1.71%	2.51%	0.8%
	(n=103)	(n=151)	(0.28% to 1.31%)

	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
DVT	1.7%	2.5%	0.8%
	(n=103)	(n=151)	(0.3% to 1.3%)
Proximal DVT			
Distal DVT			

	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
DVT	1.7%	2.5%	0.8%
	(n=103)	(n=151)	(0.3% to 1.3%)
Proximal DVT	1.0%	1.2%	0.3%
	(n=59)	(n=74)	(-0.1% to 0.6%)
Distal DVT			

	LMWH	ASA	Difference
	(N = 6110)	(N = 6101)	(95% CI)
DVT	1.7%	2.5%	0.8%
	(n=103)	(n=151)	(0.3% to 1.3%)
Proximal DVT	1.0%	1.2%	0.3%
	(n=59)	(n=74)	(-0.1% to 0.6%)
Distal DVT	0.9%	1.5%	0.6%
	(n=52)	(n=87)	(0.2% to 1.0%)



	LMWH (N = 6110)	ASA (N = 6101)	Difference (95% CI)
Bleeding Complication			
Wound Complication			
Infection			

	LMWH (N = 6110)	ASA (N = 6101)	Difference (95% CI)
Bleeding Complication	14.3%	13.7%	-0.5%
	(n=869)	(n=834)	(-1.8% to 0.7%)
Wound Complication			
Infection			

	LMWH (N = 6110)	ASA (N = 6101)	Difference (95% CI)
Bleeding Complication	14.3%	13.7%	-0.5%
	(n=869)	(n=834)	(-1.8% to 0.7%)
Wound Complication	0.23%	0.13%	-0.10%
	(n=14)	(n=8)	(-0.3% to 0.1%)
Infection			

	LMWH (N = 6110)	ASA (N = 6101)	Difference (95% CI)
Bleeding Complication	14.3%	13.7%	-0.5%
	(n=869)	(n=834)	(-1.8% to 0.7%)
Wound Complication	0.23%	0.13%	-0.10%
	(n=14)	(n=8)	(-0.3% to 0.1%)
Infection	1.6%	1.7%	0.18%
	(n=93)	(n=103)	(-0.3% to 0.6%)

Primary Result:

ASA is <u>non-inferior</u> to LMWH in preventing all-cause mortality after ortho trauma

-per protocol analysis consistent

Secondary/Safety results similar:

- PE-related death
- PE
- Proximal DVT
- Bleeding
- Wound issues
- Infection

• LMWH fewer DVT (1.7% vs 2.5%)

Similar proximal DVT (1.0% vs 1.2%)

Different distal DVT (0.9% vs 1.5%)

Difference of clinical importance?

Strengths

- RCT
- 21 centers = generalizable results
- High follow-up (96.8%) and adherence (87.4%)
- Blinded outcome adjudication panel
- Large adequate statistical power even for rare outcome

Limitations

- Open label (no signs of testing bias)
- Up to 2 doses ppx prior to enrollment
- Little data on postop adherence not aim of the study
- Changed primary outcome from PE-related mortality to all cause mortality
 - -(prior to SAP, protocol paper, looking at any data)

Main Results: Conclusions

Conclusion

<u>12,000+ patient RCT</u>:

ASA is an acceptable thromboprophylaxis agent in orthopaedic trauma patients

Non inferior for all cause mortality

Conclusion

No difference:

Death due to PE, PE

Bleeding, wound dehiscence, infection, proximal DVT

Difference:

Signal: favors LMWH in distal DVT (0.9% vs 1.5%, 95%CI: 0.2 – 1.0)

Clinicians, Patients, Hospitals Consider These Data

Aspirin vs Low Molecular Weigh Heparin for Thromboprophylaxis: A Randomized Clinical Trial of Over 12,000 Orthopaedic Trauma Patients METRC

5. WHAT'S NEXT?

Is ASA ok in "high risk" ortho trauma patients?

Subgroup Analyses

Old People with Fractures

Hip Fractures (PEP Trial¹⁵: 13,000+ asa vs placebo)

Pelvis/Acetabulum

ICU Patients

Head Injury

Subgroup Analyses

Old People with Fractures

Only Subgroup analysis – Age > 60 years

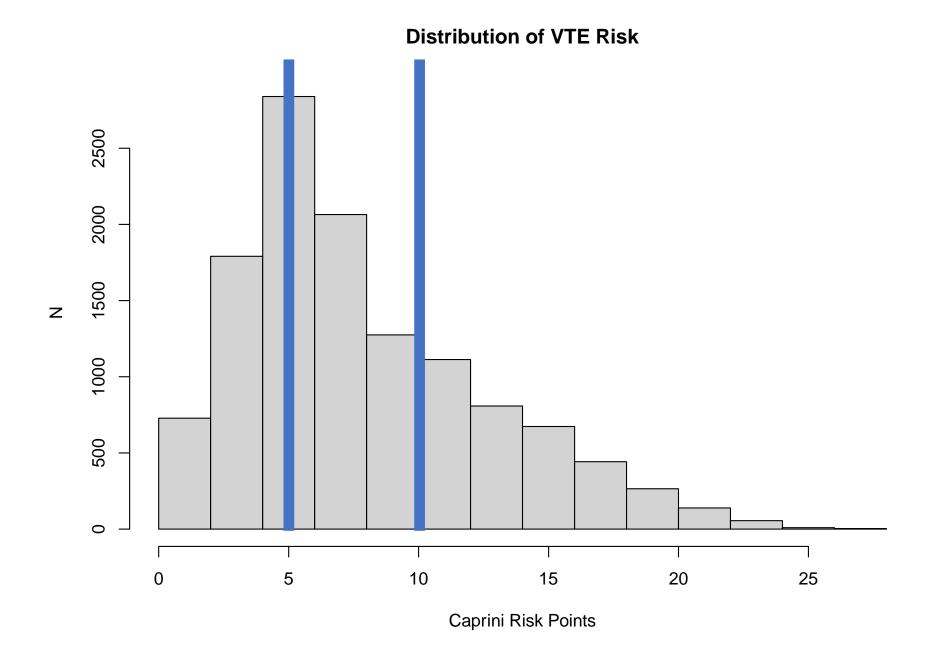
All cause mortality, n=2602 patients

No change in effect: 0.16% [95%CI: -0.94-1.25]

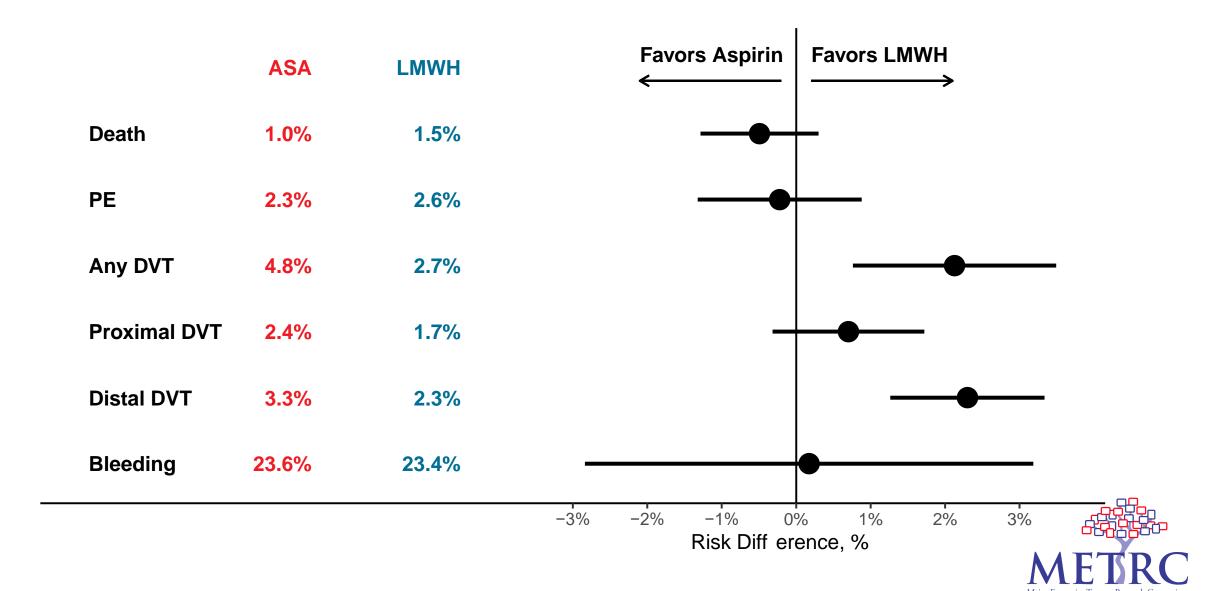
New Results!

(Prelim: Not peer reviewed)

Nathan O'Hara, PhD, MHA



	Overall,
Characteristic	(N = 12,211)
Age, years	
40 or less	5,690 (47%)
41-60	3,918 (32%)
61-74	2,001 (16%)
75 or more	602 (4.9%)
Obese, $> 30 \text{ kg/m}^2$	4,238 (35%)
Diabetes	1,002 (8.2%)
History of VTE	89 (0.7%)
History of cancer	306 (2.5%)
History of MI	98 (0.8%)
History of CHF	88 (0.7%)
History of CVD	96 (0.8%)
Estrogen medication	219 (1.8%)
Discharge weightbearing status	
As tolerated	4,512 (37%)
Protected	535 (4.4%)
Non-weightbearing	5,448 (45%)
Touchdown	1,716 (14%)
Humerus fracture	1,131 (9.3%)
Radius or ulna fracture	1,611 (13%)
Femur fracture	3,916 (32%)
Tibia fracture	5,93 (49%)
Pelvis or acetabulum fracture	2,5 (21%)
Foot fracture	1,253 (11%)
Head injury	1,569 (1570)
Spinal injury	1,268 (10%)
Thorax injury	2,253 (18%)
Abdominal injury	1,573 (13%)


Caprini Score Value	Risk Factor
1 point	Age 41 – 60 years
	Body mass index $> 30 \text{ kg/m}^2$
	History of myocardial infarction
	Congestive heart failure
	Cerebrovascular disease
	Diabetes
	Oral contraceptives or hormone replacement therapy
	Abdominal injury
	Thoracic injury
2 points	Age, $61 - 74$ years
	Prior cancer diagnosis
	Immobilization due to restricted weight bearing
	Fracture of the tibia
	Head injury
3 points	Age, ≥ 75 years
	Previous venous thromboembolism
5 points	Multi-trauma (Injury severity score ≥ 16)
	Fracture of the femur, pelvis, or acetabulum
	Spine injury

Highest Risk Quartile

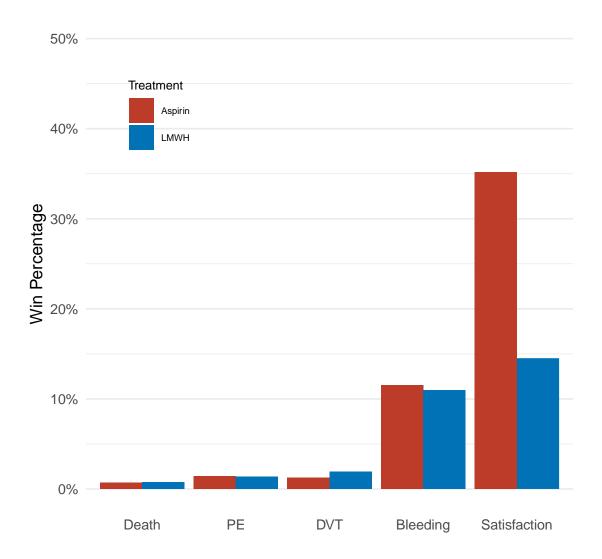
Combining outcomes to tell the whole story:

Patient Satisfaction & The "win ratio"

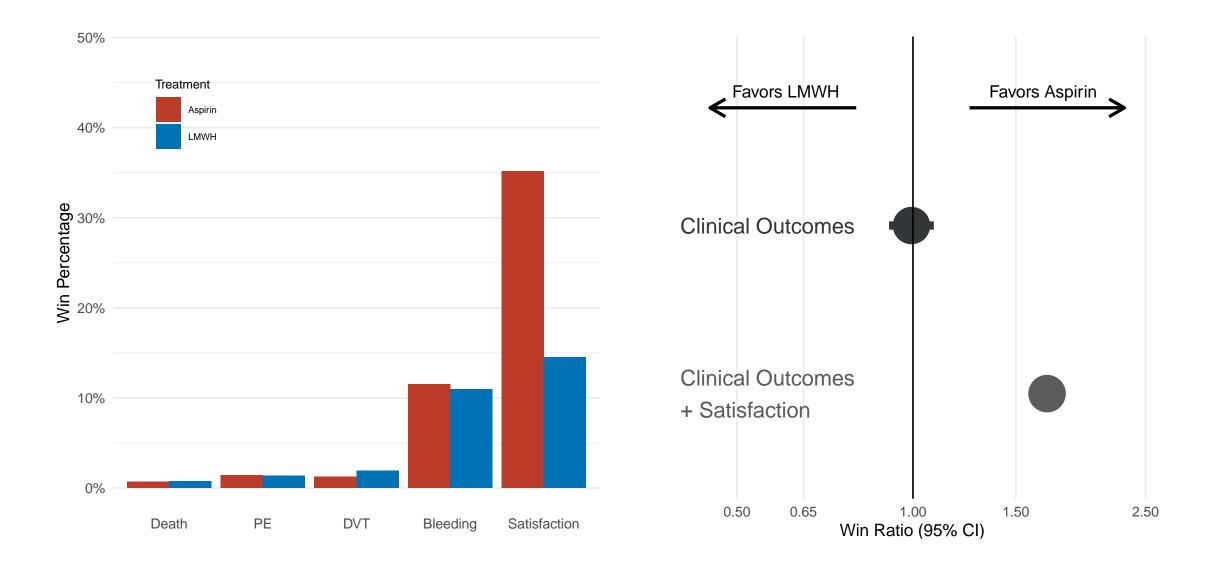
Nathan O'Hara, PhD, MHA

The Win Ratio

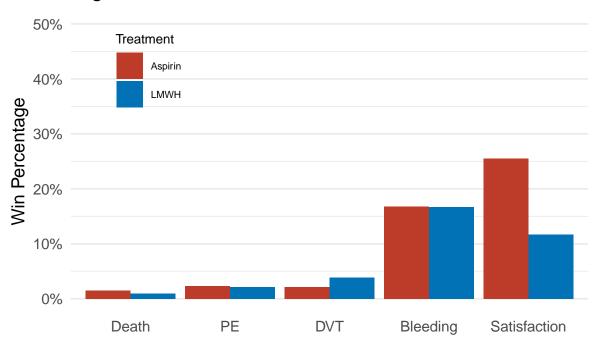
Ranked comparison of every patient to every other patient in the study

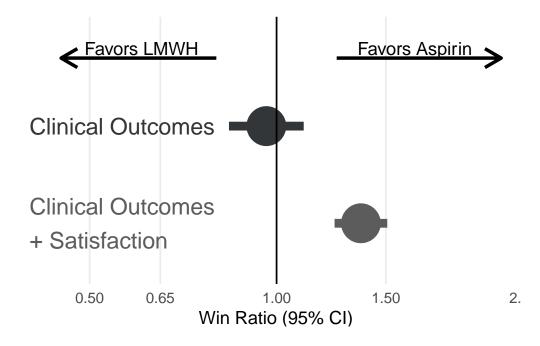

Rank the outcomes in order of importance:

Death, PE, DVT, Bleeding, Satisfaction


Compare each patient and see which patient "wins"

Sum up the wins for each treatment





Highest Risk Quartile

Lowest Risk Quartile ← Favors LMWH Favors Aspirin Clinical Outcomes Clinical Outcomes + Satisfaction 0.50 0.65 2.50 1.00 DVT Bleeding Satisfaction Win Ratio (95% CI) Second Lowest Risk Quartile ← Favors LMWH Favors Aspirin 40% Clinical Outcomes ■ Clinical Outcomes + Satisfaction 1.00 Win Ratio (95% CI) 0.50 0.65 2.50 DVT Death Bleeding Satisfaction Second Highest Risk Quartile Treatment ← Favors LMWH Favors Aspirin 40% Clinical Outcomes = Clinical Outcomes + Satisfaction 0.50 0.65 1.00 Win Ratio (95% CI) 2.50 Bleeding Satisfaction Highest Risk Quartile Treatment ← Favors LMWH Favors Aspirin Clinical Outcomes Clinical Outcomes + Satisfaction

0.50 0.65

Bleeding Satisfaction

1.00

Win Ratio (95% CI)

2.50

Future Questions

PCLOT FUTURE QUESTIONS

Heterogeneity of Treatment Effect (HTE)

Cost

Trauma w/o Fractures?

CONCLUSIONS

Conclusions

Large, 12,000+ patient RCT

ASA: Acceptable performance (Distal DVT?)

Difference:

Signal: favors LMWH in distal DVT (0.9% vs 1.5%, 95%CI: 0.2 − 1.0)

More work coming Will this change practice?

Aspirin vs Low Molecular Weigh Heparin for Thromboprophylaxis: A Randomized Clinical Trial of Over 12,000 Orthopaedic Trauma Patients METRC