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TRIGGER trial

 Pragmatic CRT comparing two transfusion thresholds for

acute upper gastrointestinal bleeding

* Feasibllity trial —is a CRT approach feasible?
— Adherence, etc




HELD

VS

HEOLD

How best to estimate
differences in
adherence etc with only
6 clusters?

Methods such as
GEEs/mixed-effects
models tend to not do
well with so few
clusters
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HELD

» Analysis of cluster level
summaries:
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Calculate mean
outcome in each
cluster

Apply a regression
model to these
cluster summaries
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But what if we’d chosen a different

analysis?

As a statistician, often interesting to see what would have happened if we’'d

chosen differently
— How much would standard errors really change?
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But what if we’d chosen a different

analysis?
« As a statistician, often interesting to see what would have happened if we'd

chosen differently
— How much would standard errors really change?

« | found something odd
— | expected standard errors to change, but the treatment effects changed too

 Odds ratio:
— Not accounting for clustering: 3.69
— Cluster-level summaries: 4.85
— GEEs (exch): 3.83
— Mixed-effects model: 4.21
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Estimands

 The treatment effect we want to estimate

* Popularised with publication of ICH-E9(R1) addendum
— Though concepts were floating around much earlier
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Estimands

« CRTs can be used to estimate different treatment effects

 Different odds ratio for adherence correspond to different

guestions
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Estimands for CRTs

« Have additional considerations compared to individually

randomised trials

— Participant- vs. cluster-average effect
— Marginal vs. cluster-specific*
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Participant- vs. cluster-average
effects

« Participant-average effect:
— The average effect across participants

« Cluster-average effect:
— The average effect across clusters

« Difference is in how data are weighted

— Participant-average effect -> participants all get equal weight
— Cluster-average effect -> clusters all get equal weight
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Informative cluster size (ICS)

 These two estimands will differ when there is informative
cluster size (ICS)

 ICS:
— Outcomes and/or treatment effects from large clusters
differ to those from smaller clusters

— E.g. patients experience better outcomes/treatment effects
If they present to a large hospital compared to a small
hospital (or vice versa)
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Which estimand to use?

* Depends on the study question

« Participant-average

— provides population-level effect of going from one intervention to
the other

— |.e. shows effect across patients

* Cluster-average

— enables evaluation of intervention’s impact directly on clusters
— l.e. can show whether intervention modified behaviour of clusters
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Implications for analysis

« Mixed-effects models/GEEs with an exchangeable correlation

structure are the most common methods of analysis for CRTs
— Problem: when ICS is present, both are biased

 The reason is to do with how these methods weight the data

— For the PA effect we need to weight participants equally

— For the CA effect we need to weight clusters equally

— These methods do neither; weighting is based on efficiency
— Biased for both PA and CA effects
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Example of bias
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What Is the alternative?

« Two options: Independence estimating equations (IEES)

and cluster-level summaries

 Both can be used to estimate either cluster- or

participant-average effects

 Both unbiased under ICS
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Independence estimating equations

« Use working independence correlation structure

— This is to ensure proper weighting of data corresponding to
our target estimand

* We know this assumption is likely false in practice

— Use in conjunction with cluster-robust SEs to obtain
correction confidence intervals/p-values
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Independence estimating equations

« Can be implemented different ways

— GEEs with working independence correlation structure
— Maximum likelihood/least squares
— Key thing is to ensure cluster-robust SEs

« Can be used to estimate either participant- or cluster-average effect

— For PA effect -> implement as usual (i.e. unweighted)
— For CA effect -> weight participants by —
nj
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Analysis of cluster-level summaries

 Calculate mean outcome In each cluster

* Apply regression model to cluster-level summaries

— Unweighted regression model for cluster-average effect
— Weighted by n; for participant-average effect
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Application to TRIGGER

Estimand

Estimator

Odds ratio (95% Cl)

Marginal participant-average

GEEs (exchangeable correlation structure)

3.83 (1.65 to 8.86)

IEEs (unweighted)

3.69 (1.83 to 7.43)

Cluster-level summaries (weighted)

3.69 (1.83 to 7.43)

Cluster-specific participant-
average

Mixed-effects model

4.21 (1.86 t0 9.51)

Cluster-level summaries (weighted)

4.28 (1.11 to 16.48)

Marginal cluster-average

IEEs (weighted)

3.92 (1.59 to 9.64)

Cluster-level summaries (unweighted)

3.92 (1.51 to 10.19)

Cluster-specific cluster-average

Cluster-level summaries (unweighted)

4.85 (0.85 to 27.53)
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How common Is ICS In practice?

 If unlikely, then means we could use our standard
methods (mixed-effects models/GEEs with an

exchangeable correlation structure) and not worry about
it

* Occurrence of ICS has never (to our knowledge) been
evaluated
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Percent difference (CA vs. PA effect)
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Practical implications

* Need to think about estimand
— Which question is most relevant for my study?

 Tailor analysis around chosen estimand
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If ICS expected

« Use independence estimating equations/cluster-level

summaries

— Robust to ICS

— Need to ensure appropriate weighting is used
corresponding to desired estimand
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If ICS not expected

« Could use mixed-effects models/GEEs(exch)

— Increase precision compared to IEEs/cluster summaries
— With IEES/cluster-level summaries as a sensitivity analysis

* Could use IEEs/cluster-level summaries anyways

— Ensures results robust even if you're wrong about ICS
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Future work

« Evaluating ICS in other trial datasets
« Sample size calculations for when ICS Is expected

« Evaluating performance of estimators with small number

of clusters

« Extending to cluster-crossover/stepped wedge trials
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New articles coming soon(ish)

 |Informative cluster size In cluster-randomised trials: A

case study from the TRIGGER trial
— Our results on ICS in TRIGGER

« Demystifying estimands in cluster randomised trials

— More on PA vs. CA and marginal vs. cluster-specific
effects, and estimation
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