

Smarter Studies Global Impact Better Health

Estimands in Cluster-Randomized Trials: Choosing Analyses that Answer the Right Question

Brennan Kahan

Outline

- Motivation
- Estimands
- Implications for analysis
- Conclusions

TRIGGER trial

- Pragmatic CRT comparing two transfusion thresholds for acute upper gastrointestinal bleeding
- Feasibility trial is a CRT approach feasible?
 - Adherence, etc

- How best to estimate differences in adherence etc with only 6 clusters?
- Methods such as GEEs/mixed-effects models tend to not do well with so few clusters

- Analysis of cluster level summaries:
 - Calculate mean outcome in each cluster
 - Apply a regression model to these cluster summaries

But what if we'd chosen a different analysis?

- As a statistician, often interesting to see what would have happened if we'd chosen differently
 - How much would standard errors really change?

But what if we'd chosen a different analysis?

- As a statistician, often interesting to see what would have happened if we'd chosen differently
 - How much would standard errors really change?
- I found something odd
 - I expected standard errors to change, but the treatment effects changed too

- Odds ratio:
 - Not accounting for clustering: 3.69
 - Cluster-level summaries: 4.85
 - GEEs (exch): 3.83
 - Mixed-effects model: 4.21

Estimands

- The treatment effect we want to estimate
- Popularised with publication of ICH-E9(R1) addendum
 - Though concepts were floating around much earlier

Estimands

- CRTs can be used to estimate *different* treatment effects
- Different odds ratio for adherence correspond to different questions

Estimands for CRTs

 Have additional considerations compared to individually randomised trials

- Participant- vs. cluster-average effect
- Marginal vs. cluster-specific*

Participant- vs. cluster-average effects

- Participant-average effect:
 - The average effect across participants
- Cluster-average effect:
 - The average effect across clusters
- Difference is in how data are weighted
 - Participant-average effect -> participants all get equal weight
 - Cluster-average effect -> clusters all get equal weight

Informative cluster size (ICS)

- These two estimands will differ when there is informative cluster size (ICS)
- ICS:
 - Outcomes and/or treatment effects from large clusters differ to those from smaller clusters
 - E.g. patients experience better outcomes/treatment effects if they present to a large hospital compared to a small hospital (or vice versa)

Which estimand to use?

- Depends on the study question
- Participant-average
 - provides population-level effect of going from one intervention to the other
 - I.e. shows effect across patients
- Cluster-average
 - enables evaluation of intervention's impact directly on clusters
 - I.e. can show whether intervention modified behaviour of clusters

Implications for analysis

- Mixed-effects models/GEEs with an exchangeable correlation structure are the most common methods of analysis for CRTs
 – Problem: when ICS is present, both are biased
- The reason is to do with how these methods weight the data
 - For the PA effect we need to weight participants equally
 - For the CA effect we need to weight clusters equally
 - These methods do neither; weighting is based on efficiency

MRC CTU at UCL

Biased for both PA and CA effects

Example of bias

- Simulated example based on 30 clusters with N=100 and 30 with N=10
- Bias is for PA effect

What is the alternative?

- Two options: Independence estimating equations (IEEs) and cluster-level summaries
- Both can be used to estimate either cluster- or participant-average effects
- Both unbiased under ICS

Independence estimating equations

- Use working independence correlation structure
 - This is to ensure proper weighting of data corresponding to our target estimand
- We know this assumption is likely false in practice
 - Use in conjunction with cluster-robust SEs to obtain correction confidence intervals/p-values

Independence estimating equations

- Can be implemented different ways
 - GEEs with working independence correlation structure
 - Maximum likelihood/least squares
 - Key thing is to ensure cluster-robust SEs
- Can be used to estimate either participant- or cluster-average effect
 - For PA effect -> implement as usual (i.e. unweighted)
 - For CA effect -> weight participants by $\frac{1}{n_i}$

Analysis of cluster-level summaries

- Calculate mean outcome in each cluster
- Apply regression model to cluster-level summaries
 - Unweighted regression model for cluster-average effect
 - Weighted by n_i for participant-average effect

Application to TRIGGER

Estimand	Estimator	Odds ratio (95% CI)
Marginal participant-average		
	GEEs (exchangeable correlation structure)	3.83 (1.65 to 8.86)
	IEEs (unweighted)	3.69 (1.83 to 7.43)
	Cluster-level summaries (weighted)	3.69 (1.83 to 7.43)
Cluster-specific participant-		
average		
	Mixed-effects model	4.21 (1.86 to 9.51)
	Cluster-level summaries (weighted)	4.28 (1.11 to 16.48)
Marginal cluster-average		
	IEEs (weighted)	3.92 (1.59 to 9.64)
	Cluster-level summaries (unweighted)	3.92 (1.51 to 10.19)
Cluster-specific cluster-average		
	Cluster-level summaries (unweighted)	4.85 (0.85 to 27.53)

How common is ICS in practice?

- If unlikely, then means we could use our standard methods (mixed-effects models/GEEs with an exchangeable correlation structure) and not worry about it
- Occurrence of ICS has never (to our knowledge) been evaluated

Practical implications

- Need to think about estimand
 - Which question is most relevant for my study?
- Tailor analysis around chosen estimand

If ICS expected

- Use independence estimating equations/cluster-level summaries
 - Robust to ICS
 - Need to ensure appropriate weighting is used corresponding to desired estimand

If ICS not expected

- Could use mixed-effects models/GEEs(exch)
 - Increase precision compared to IEEs/cluster summaries
 - With IEEs/cluster-level summaries as a sensitivity analysis

- Could use IEEs/cluster-level summaries anyways
 - Ensures results robust even if you're wrong about ICS

Future work

- Evaluating ICS in other trial datasets
- Sample size calculations for when ICS is expected
- Evaluating performance of estimators with small number of clusters
- Extending to cluster-crossover/stepped wedge trials

International Journal of Epidemiology, 2022, 1–10 https://doi.org/10.1093/ije/dyac131 Original article

OXFORD

Original article

Estimands in cluster-randomized trials: choosing analyses that answer the right question

Brennan C Kahan,¹* Fan Li (10),^{2,3} Andrew J Copas¹ and Michael O Harhay (10)^{4,5}

¹MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, London, UK, ²Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA, ³Center for Methods in Implementation and Prevention Science, Yale University School of Public Health, New Haven, CT, USA, ⁴Clinical Trials Methods and Outcomes Lab, PAIR (Palliative and Advanced Illness Research) Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA and ⁵Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

*Corresponding author. MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, 90 High Holborn, London, WC1V 6LJ, UK. E-mail: b.kahan@ucl.ac.uk

Received 25 October 2021; Editorial decision 6 June 2022; Accepted 7 June 2022

New articles coming soon(ish)

- Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial
 - Our results on ICS in TRIGGER

- Demystifying estimands in cluster randomised trials
 - More on PA vs. CA and marginal vs. cluster-specific effects, and estimation

Acknowledgements

- Fan Li
- Michael Harhay
- Andrew Copas
- Bryan Blette
- Vipul Jairath

