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United States fail to improve the conditions of between 3 and 24 people (red).
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8. REMICADE (infliximab) 9. COPAXONE (glatiramer acetate) 10. NEULASTA (pegfilgrastim)
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Based on published number needed to treat (NNT) figures. For a full list of references, see Supplementary Information at go.nature.com/4dr78f.
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Model Details Quantitative Analyses
o Developed by rescarchers at Google and the University of Toronto, 2018, v1
« Convolutional Neural Net.

False Positive Rate @ 0.5

o Pretrained for face recognition then fine-tuned with cross-entropy loss for binary et
smiling classification. d
et
Intended Use Al
o Intended to be used for fun applications, such as creating cartoon smiles on real ol
images: augmentative applications, such as providing details for people who are ot
blind; or assisting applications such as automatically finding smiling photos. ot
o Particularly intended for younger audiences. o

© Not suitable for emotion detection or determining affect; smiles were annotated 0.000.020.04 0.06 0.080.100.120.14

based on physical appearance, and not underlying emotions. T N et 0
°

Factors

« Based on known problems with computer vision face technology, potential rel-

evant factors include groups for gender, age, race, and Fitzpatrick skin type;

hardware factors of camera type and lens type; and environmental factors of

lighting and humidity.

Evaluation factors are gender and age group, as annotated in the publicly available

dataset CelebA [36]. Further possible factors not currently available in a public

smiling dataset. Gender and age determined by third-party annotators based

on visual presentation, following a set of examples of male/female gender and

young/old age. Further details available in [36].

Metris

o Evaluation metrics include False Positive Rate and False Negative Rate to
measure disproportionate model performance errors across subgroups. False
Discovery Rate and False Omission Rate, which measure the fraction of nega-

Model Cards for Model Reporting

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, Timnit Gebru
{mmitchellai simonewu.andrewzaldivar, parkerbarnes, lucyvasserman, benhutch, espitzer. tgebru}@google com
deborah raji@mail utoronto.ca

old ot
tive (not smiling) and positive (smiling) predictions that are incorrectly predicted Young ‘ot R ef 1 7
to be positive and negative, respectively, are also reported. [48] e .

« Together, these four metrics provide values for different errors that can be calcu- fomalo o

lated from the confusion matrix for binary classification systems.
o These also correspond to metrics in recent definitions of “fairness” in machine
learning (cf. [6, 26]), where parity across subgroups for different metrics corre-
spond to different fairness criteria.
95% confidence intervals calculated with bootstrap resampling
All metries reported at the 5 decision threshold, where all error types (FPR, FNR,

anl 1o
0.000,020.040.060.080.100.120.14

False Omission Rate @ 0.5
°

°

. °
FDR, FOR) are within the same range (0.04 - 0.14). °
Training Data Evaluation Data e

°
o CelebA [36), training data split. o CelebA [36), test data split
« Chosen as a basic proof-of-concept. *
Ethical Considerations *
an °

o Faces and annotations based on public figures (celebrities). No new information
is inferred or annotated. 0.000.,020,04 0.060.080.100.120.14

Caveats and Recommendations

« Does not capture race or skin type, which has been reported as a source of disproportionate errors [5).

o Given gender classes are binary (male/not male), which we include as male/female. Further work needed to evaluate across a
spectrum of genders.

o Anideal evaluation dataset would additionally include annotations for Fitzpatrick skin type, camera details, and environment
(lighting/humidity) details.

Figure 2: Example Model Card for a smile detector trained and evaluated on the CelebA dataset.



Present: What’s stopping us from using ML in CR?

. - ABOUT US LAB NOTES
£% trials.ai CONTACT US

Clinical trials and

a uto m ate observational researcIl;luumef\|
and add |nte"|gence to Pretrial planning

Protocol development

Drug regimen selection DISCOVERING
Site selection THERAPEUTICS

Participant Dat THAT WOULDN'T
ata
5E FOUND BEFORE.

oho
selection

trials.ai. Accessed February 2, 2021.

FIND

M 0 RE PAT I E N TS Pa.tient. MonitO( d¢
NMINUTES |1 o S

NOT MONTHS retention =

. https://www.bullfrogai.com/our-solution/

https://deep6.ai/how-it-works/

) AiCure EVENTS & NEWS LE NERSHIPS c v CONTAC S o . —
dir o Recruit s
[0}
THE RIGHT DOSE FOR o S
1= [}
3 THE RIGHT PATIENT L Increase Enrollment by 50%. =
S Prescreen in Under 10 Minutes.
o
‘S
Recruit is an Al-powered solution for clinical sites
looking to accelerate patient prescreening,
Fig. 2 tial to contribute to clinical research through
increa hning, conduct, and analysis of clinical trials




Present: What’s stopping us from using ML in CR?

Med Health Care and Philos (2016) 19:177-190 J \
DOL 10.1007/s1 1019-015-9661-6 CrossMark

SCIENTIFIC CONTRIBUTION

“You hoped we would sleep walk into accepting the collection
of our data”: controversies surrounding the UK care.data scheme

and their wider relevance for biomedical research

Sigrid Sterckx'( - Vojin Rakic? - Julian Cockbain® - Pascal Borry*
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An invisible hand: Patients aren’t being

told about the Al systems advising their
care

" " By Rebecca Robbins ¥ and Erin Brodwin w

Ref. 19
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If you can go to an ATM in
Antwerp, or anywhere, you
can securely access your $
in your US bank with

virtually no friction other
than a fee
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Request

Takes Seconds

Delivery



Common stock issued by
B&O Railroad Co. in 1903

Common stock issued by
Pennsylvania Railroad Co. in 1959

4o akor vominad sl s of Ko Towwts Therint ouy

e s S

Promissory note issued by the 2nd
Promissory note issued by the Bank of the United States in 1840

Imperial Bank of India in 1926

Mortgage bond issued by Cleveland
Short-Line Railway Co. in 1911

Certificate of deposit issued by the
U.S. Postal Savings System in 1932

Common stock issued by Mortgage note issued (signed) by
Reading Co. in 1969 "Shoeless"Joe Jackson in 1941 the U.S. Government in 2009
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“I1don’t know how many aortic stenosis
patients | have ”

Currently, it’s difficult to even obtain basic counts
of patients...
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“Idon’t know how many prostate cancer
patients | have ”

Currently, it’s difficult to even obtain basic counts
of patients...
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Beyond counts, what does data liquidity look like?

How many patients meet the eligibility
criteria for this RSV study?

What 1s the door-to-balloon time for
the past month?

How many MACE events did we see for
this cohort in the last 6 months?

I want to join liver MRIs with
radiology and pathology reports for
deep learning to predict hepatic cancer
outcomes
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Beyond counts, what does data liquidity |

How many patients meet t
criteria for this RS

time for

e see for
6 months?

join liver MRIs with

logy and pathology reports for

eep learning to predict hepatic cancer
outcomes
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Data Liquidity

before delving into those, it's probably
helpful to discuss what “data liquidity”
IS not
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for anyone regardless of its sensitivity
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Data Liquidity is not

It Is not untrammeled access to gdata
for anyone regardless of its sensitivity

It iIs not solved only with technology

It Is not a pipe dream
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Data Liquidity is

Is agile & appropriate movement,
merging, and analysis of data

Is where infrastructure & access are
not the rate-limiting step

Is where analytic priorities, not
process, drive use

Is secure, compliant, and auditable
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21st Century Cures Act: Interoperability, Information Blocking,
and the ONC Health IT Certification Program

A Rule by the Health and Human Services Department on 05/01/2020 \\ v

_PUBLISHED DOCUMENT

——— [ Start Printed Page 25642

AGENCY:

Office of the National Coordinator for Health Information Technology (ONC),
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ACTION:
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SUMMARY:

This final rule implements certain provisions of the 21st Century Cures Act,
including Conditions and Maintenance of Certification requirements for health
information technology (health IT) developers under the ONC Health IT
Certification Program (Program), the voluntary certification of health IT for use
by pediatric health care providers, and reasonable and necessary activities that
do not constitute information blocking. The implementation of these provisions
will advance interoperability and support the access, exchange, and use of
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21st Century Cures Act, Section 4002
" must also attest that it publisheo
application program interfaces ( ) ano
allows health information from such APIs to
be accessible, exchanged and used without
special effort through the use of APIs or

successor technologies or stanc

including providing access to a

ards,
data

elements of a patient’s EHR to the extent
permissible under applicable privacy laws.”
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=) [echnology

Data Standards

The diversity of data types: e.qg.
structured, unstructured, EHR,
molecular, wearable, social
determinants, &c...

Formats not only have to account for
structure, but transmissibility. Systems
have to be prepared for realtime data
transactions

Fungibility: machine learning learns with
bulk data, but must be able to generate
Inference with individual data
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G

Not a panacea!

Technology

Considerations include:

e

The diversity of data
structured, unstructu
molecular, wearable,
determinants, &c...

The velocity with whi
originate and move. <
prepared for realtime
analysis

The scalability and fle
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Technology

Considerations include:

* Immature ecosystem
* More of a transaction standard

| * What’s “Inside the box” can
| be quite permissive
\(d

* Needs real world critical mass
for us to learn good vs bad
Implementations
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Data Liquidity

We have a tremendous
opportunity to build a true
clinical learning ecosystem

ITIS NOW TIME TO BUILD

YF&“/
QY




Data Liquidity

“the more that we use data, the clearer
the river of data gets”

—Amy Abernethy
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U.S. FOOD & DRUG

ADMINISTRATION

Data selection and
management

Model training
and tuning

Artificial Intelligence/Machine Learning (Al/ML)-Based
Software as a Medical Device (SaMD) Action Plan
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Excellence

January 2021 Model validation

o Performance evaluation
o Clinical evaluation

" Ref. 20
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Model monitoring
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Figure 2: Overlay of FDA's TPLC approach on Al/ML workflow
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a b c
Overall population Model training Subpopulation FPR comparisons
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nature., .
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is underdiagnosis.

|| A false-positive (FP)
prediction of

Underdiagnosis bias of artificial intelligence
algorithms applied to chest radiographs in
under-served patient populations

Laleh Seyyed-Kalantari©'?%%, Haoran Zhang?, Matthew B. A. McDermott?, Irene Y. Chen® and
Marzyeh Ghassemi(®23
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Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings

2

Tolga Bolukbasi', Kai-Wei Chang?, James Zou?, Venkatesh Saligmuml . Adam Kalai®
lBunl(m University, 8 Saint Mary’s Street, Boston, MA
2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA

tolgab@bu.edu, kwiikwchang.net. jamesyzouGgmail.com, srvitbu.edu, adam. kalaifimicrosoft.com
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Figure 7: Selected words projected along two axes: r is a projection onto the difference between the Figure 8: Number of stereotypical (Left) and appropriate (Right) analogies generated by wordembeddings
embeddings of the words ke and she. and y is a direction learned in the embedding that captures gender before and after debiasing.

neutrality, with gender neutral words above the line and gender specific words below the line. Our hard
debiasing algorithm removes the gender pair associations for gender nentral words. In this figure, the words
above the horizontal line would all be collapsed to the vertical line.
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Future: Overcoming barriers to implementation

Counterfactual Fairness
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Future: Immediate next steps

 Educate yourself and trainees about ML techniques &
reporting standards.

 Engage with efforts to define the regulatory
perspective on ML in CR.

 Collaborate on proof-of-concept studies showing the
promise of ML in CR & comparing ML to conventional
approaches.

 Support data interoperability initiatives and advocate
for patient-centered approaches to data ownership.
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