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~50 attendees including:

• clinical researchers

• machine learning experts

• biopharmaceutical industry

• technology companies

• patient advocacy groups

• FDA
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Resource-intensive

Opportunities for error & innovation

Can negatively affect study 

completion & data quality
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Ethical imperative

Ethical risk
Ref. 16, Schork
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What can we do?

What should we do and 
how?



1. Adequately skilled teams

2. Data:

• Adequate quantity

• Multiple sources

• Adequate quality

Operational barriers

16/25
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Present: What’s stopping us from using ML in CR?

Philosophical barriers

1. Explainability versus 
trustworthiness

2. Error and bias

Validation

Reporting

Ref. 17
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Future: Overcoming barriers to implementation

→ Erich & a discussion of data
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Analogy

If you can go to an ATM in 
Antwerp, or anywhere, you 
can securely access your $ 
in your US bank with 
virtually no friction other 
than a fee
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Analogy

Request

Delivery

Takes Seconds



Analogy
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Data Liquidity

I don’t know how many                     
patients I have ”

” aortic stenosis

Currently, it’s difficult to even obtain basic counts 
of patients…
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I don’t know how many                     
patients I have ”

” prostate cancer

Currently, it’s difficult to even obtain basic counts 
of patients…
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What is the door-to-balloon time for 
the past month?

How many MACE events did we see for 
this cohort in the last 6 months?
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How many patients meet the eligibility 
criteria for this RSV study?
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I want to join liver MRIs with 
radiology and pathology reports for 
deep learning to predict hepatic cancer 
outcomes



Data Liquidity

Beyond counts, what does data liquidity look like?

How many patients meet the eligibility 
criteria for this RSV study?

What is the door-to-balloon time for 
the past month?

How many MACE events did we see for 
this cohort in the last 6 months?An answer—with appropriate security 

and compliance controls—should be 

obtainable in minutes

I want to join liver MRIs with 
radiology and pathology reports for 
deep learning to predict hepatic cancer 
outcomes



Data Liquidity

So what might liquidity look like?

import urllib 
import json 
import time 
from twilio.rest import TwilioRestClient 

# Twilio info 
account_sid = "ACda2817bd10290bff2a66021d6204c94a" 
auth_token  = "<SECRET DATA>" 
from_phone = "+13107517490" 
to_phone = "+18182937524" 
client = TwilioRestClient(account_sid, auth_token) 

# How far back we want to look for results 
start_time = str(time.time() - 60 * 60) # An hour ago 

# Practioner to fetch labs for 
practioner_id = 259386 

# URL to fetch lab results from 
url=“".join(["https://api.liquidity.duhs.com?_format=json&preformer=", 
practioner_id, "&issued=>", start_time]) 
results = json.loads(urllib.urlopen(url)); 

# Loop through all results in the past hour to see if they are normal or not 
for result in results: 
  if data["interpretation"]["coding"][0]["code"] != "N": 
     
# if the result is abnormal, send a text message to alert the ordering practioner 
    message = client.messages.create(body="Abnormal lab detected for one of your 
patients.", 
    to=to_phone,    # Replace with your phone number 
    from_=from_phone) # Replace with your Twilio number 
    break # We only need to do this once per result set
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So what might liquidity look like?

To many, this Python code may look like gibberish. 
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Data Liquidity

So what might liquidity look like?

To a Data Scientist, this means that she can write 
simple, straightforward code to answer complex 
clinical and administrative questions in conjunction 
with clinical and administrative leaders 
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Policy

Technology

To get there, we need to consider two 
components
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before delving into those, it’s probably 
helpful to discuss what “data liquidity” 
is not
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for anyone regardless of its sensitivity
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It is not untrammeled access to data 
for anyone regardless of its sensitivity

is not

It is not solved only with technology

It is not a pipe dream
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Data Liquidity

Is agile & appropriate movement, 
merging, and analysis of data

is

Is where infrastructure & access are 
not the rate-limiting step

Is where analytic priorities, not 
process, drive use

Is secure, compliant, and auditable
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Policy
21st Century Cures Act, Section 4002 
“… must also attest that it published 
application program interfaces (           ) and 
allows health information from such APIs to 
be accessible, exchanged and used without 
special effort through the use of APIs or 
successor technologies or standards, 
including providing access to all data 
elements of a patient’s EHR to the extent 
permissible under applicable privacy laws.”
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Technology

Let’s now look at 
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Data Standards
The diversity of data types: e.g. 
structured, unstructured, EHR, 
molecular, wearable, social 
determinants, &c…
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have to be prepared for realtime data 
transactions
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Technology

Formats not only have to account for 
structure, but transmissibility. Systems 
have to be prepared for realtime data 
transactions

Fungibility: machine learning learns with 
bulk data, but must be able to generate 
inference with individual data

The diversity of data types: e.g. 
structured, unstructured, EHR, 
molecular, wearable, social 
determinants, &c…

Data Standards
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The diversity of data types: e.g. 
structured, unstructured, EHR, 
molecular, wearable, social 
determinants, &c…

The velocity with which these data 
originate and move. Systems have to be 
prepared for realtime “streaming” 
analysis

The scalability and flexibility of data & 
compute infrastructure to handle the 
diverse data science workloads that 
these diverse data types require



Data Liquidity

Technology
Considerations include:

The diversity of data types: e.g. 
structured, unstructured, EHR, 
molecular, wearable, social 
determinants, &c…

The velocity with which these data 
originate and move. Systems have to be 
prepared for realtime “streaming” 
analysis

The scalability and flexibility of data & 
compute infrastructure to handle the 
diverse data science workloads that 
these diverse data types require

Not a panacea!



Data Liquidity

Technology
Considerations include:

{★ Immature ecosystem 
★More of a transaction standard 
★What’s “inside the box” can 

be quite permissive 
★Needs real world critical mass 

for us to learn good vs bad 
implementations
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EHR

IT IS NOW TIME TO BUILD
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EHR

IT IS NOW TIME TO BUILD

We have a tremendous 
opportunity to build a true 
clinical learning ecosystem 



Data Liquidity

“the more that we use data, the clearer 
the river of data gets”

—Amy Abernethy
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Future: Immediate next steps

• Educate yourself and trainees about ML techniques &

reporting standards.

• Engage with efforts to define the regulatory

perspective on ML in CR.

• Collaborate on proof-of-concept studies showing the

promise of ML in CR & comparing ML to conventional

approaches.

• Support data interoperability initiatives and advocate

for patient-centered approaches to data ownership.
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Thank you 

Questions and comments?




