Why Are Imaging RCTs Different? Lessons from Chest Pain Evaluation Trials

Pamela S. Douglas, MD, MACC, FASE, FAHA

Ursula Geller Distinguished Professor of Research in Cardiovascular Diseases Duke University Past President, American College of Cardiology Past President, American Society of Echocardiography

Relationships With Industry

I have one industry relationship relevant to this presentation.

All relationships with industry may be found online: http://www.dcri.duke.edu/research/coi.jsp

> Caption Health Foresite Labs <u>HeartFlow</u> UpToDate/Kluwer

I will not discuss any off label or investigational uses in this presentation.

Imaging Has Transformed the Cardiovascular Enterprise

Imaging Clinical Trials: Evaluation of Stable Chest Pain in 2024

- CVD is the #1 killer; Often presents with chest pain
- >10 million new stable CP pts in US each year; many receive imaging
- AHA/ACC Chest Pain Guideline 2021: Many Class 1 imaging approaches
- In 2024, despite several large RCTs comparing evaluation approaches
 - No universal consensus on initial imaging strategies: who to test and how
 - Ongoing concerns about over imaging lowest risk patients but no consensus on testing deferral pathways
 - New imaging technologies may offer value but are untested

Why Isn't There a Consensus on "Best" Imaging Pathways for Chest Pain Evaluations?

- Under studied: Cardiology is disease and mgmt focused; symptoms are an entry point
- Imaging information is separated from hard outcomes; identifying causality is difficult
- A few myths related to chest pain imaging
 - Stress testing already provides excellent results no need to improve
 - Information from noninvasive tests is largely interchangeable
 - Coronary artery disease is simple
- Funding and interest are limited, but stakes are high
 - No FDA required efficacy testing for imaging (510K) \rightarrow Limited business case for industry
 - No FDA-validated biomarker/prognostic marker \rightarrow Barrier to drug development and innovation
 - A validated imaging biomarker would markedly reduce cost and time to market

CV Imaging Trials: An Evidence Gap

- Medicare CV dx testing rates in 2016: 316/1000; Roughly **21 M tests** in US/y
- Annually US cost ~\$10B (est \$200/test)
- The evidence base is small ~ 22 trials pubs/y; No growth x 10 years
- Given high utilization and costs, research expenditures are very low
 - Imaging: 1 publication per \$455K expenditure
 - In contrast: HF costs are 4-5x higher, but >800 trial pubs/y, or 1 paper/\$62K in costs

Rapid Technological Change is the Norm

- Machine learning and AI
 - As of Jan 2024; FDA lists >500 ML/AI devices
 - 155 listed 8/2022 7/2023: 79% radiology, 9% cardiology, 5% neuro, 4% GI
 - Radiology applications increasingly hybrid
 - Safe and effective device
 - Classification of disease
- Image acquisition: Photon Counting CTA
 - Image resolution similar to IVUS, $\sim 200 \ \mu m$
- Many other acquisition and interpretation advances outpacing ability to test prospectively

Imaging Trials: Chest Pain Evaluation

- Pragmatic design considerations
- Who is the patient we want to study?
- What is the disease?
- Flexibility of the intervention
- What events are we trying to avoid?

Pragmatic Imaging Trial Design

- Similar to most types of trials, there are pros and cons to both pragmatic and explanatory designs in imaging trials
- Feasibility and generalizability vs scientific hypothesis affect design choices including
 - Inclusion/exclusion criteria
 - Flexibility of imaging intervention being tested (incl use of core lab)
 - Guidance/control of subsequent care after imaging (medical management, procedures)
 - Endpoints and outcomes

PRECIS - 2

Implementation Science 2021

Imaging Trials: Chest Pain Evaluation

- Pragmatic design considerations
- Who is the patient we want to study?
- What is the disease?
- Flexibility of the intervention
- What events are we trying to avoid?

Who is the Patient We Want to Study: Cohort Selection

- People with angina-like symptoms are often not patients with a disease
- Most don't have obstructive CAD, but a few are very high risk
 - Potential for over testing with significant false positive rate (specificity ~80%)
 - Potential for missed diagnosis with stress imaging (sensitivity ~80%)
- Obstructive CAD in stable CP is unlikely (10-20%) and outcomes are excellent (CV death MI ~ 1%/yr) wo revascularization
- Many possible approaches from all-comer (with MD referral) to those who truly need testing (PTP) to only those with recurrent or resistant symptoms

EHJ CVI 2019: 20: 574

Determining CAD Likelihood: Updating PTP Algorithms

Pretest probability for patients with suspected obstructive coronary artery disease: re-evaluating Diamond–Forrester for the contemporary era and clinical implications: insights from the PROMISE trial

- Old Diamond and Forrester PTP based on cath and autopsy data from 1970's
- New PTP derived from contemporary CTA cohorts
- PROMISE: 4415 pts with chest pain and CTA imaging
- Actual anatomy by CTA→PTP 'estimate'
- Result: **↓ PTP by 50-70%** vs old D-F (2012 ACC/AHA GL)

CAD by CTA (ESC PTP)PTP by DF

Improving on the New PTP Estimates for CAD

- Can the updated PTP be improved by strategies? Specifically, does adding RFs or RF+CAC to 2019 PTP improve CAD prediction?
- Machine Learning model: 41,177 pts; Validation: 15,411 pts: PROMISE, Dan-NICAD
- Results: Adding RFs or RF+CAC reduces testing (max 43% reclass) and improves accuracy
- Use of CAC 'instead of testing' now a Class 2a recommendation in 2021 CP Guidelines
- Watch for ESC 2024 guidelines...

Model	<5% PTP: No testing	>5% PTP: Testing	AUC for CAD
2019 PTP alone	11%	89%	72%
2019 PTP+RF	38%	62%	75%
2019 PTP+RF+CAC	54%	46%	85%

JAMA Cardiology | Original Investigation

Identification of Patients With Stable Chest Pain Deriving Minimal Value From Noninvasive Testing The PROMISE Minimal-Risk Tool, A Secondary Analysis of a Randomized Clinical Trial

- 4,631 PROMISE cCTA pts, model 'No' Risk: 27% w/o CAC, plaque or events (not only obs CAD)
- Result: 10 clinical variables predicted 'No' Risk
- Validated in SCOT-HEART, Dan-NICAD (n=3,439)
- Combined in all 3 cohorts: C stat 0.76

Calculator: https://heartcenter.shinyapps.io/PROMISE_Minimal_Risk_Tool/

JAMA Cardiology 2017 2:400-408 Intl J Cardiology 2018 252:31-34 Intl J CV Imaging 2021 37:699–706 JAMA Cardiology | Original Investigation

Deferred Testing in Stable Outpatients With Suspected Coronary Artery Disease

A Prespecified Secondary Analysis of the PRECISE Randomized Clinical Trial

- 422 of 2103 PRECISE participants identified as low risk by PMRS
 - Prespecified cut point to achieve ~20% of cohort
- Randomized to usual care (MD choice) or deferred testing
- Deferred testing vs usual care:
 - 64% never tested vs 36%
 - Testing was later 48 vs 15 days; 96% normal
 - Primary endpoint (death, MI, cath wo CAD)
 2 vs 13 participants
- Similar reduction in angina in both groups

Clinical Implications: Who is the Patient We Want to Study?

- Heterogeneity of chest pain patients with varying clinical need to diagnosis a treatable disease (CAD)
- If seeking intermediate risk patients with suspected obstructive CAD, cohort selection best done using risk factors as well as age, sex and symptoms
 - Exclude lowest risk patients (via PMRS or updated PTP) vs
 - Alternative: all-comer, pragmatic trial
- Consider the role of OMT failure before imaging
- Implications for enrolling a more homogenous cohort likely to benefit in a trial

Imaging Trials: Chest Pain Evaluation

- Pragmatic design considerations
- Who is the patient we want to study?
- What is the disease?
- Flexibility of the intervention
- What events are we trying to avoid?

CAD Has Multiple Phenotypes: Which Imaging Targets Should RCTs Investigate?

- RCT design will vary depending on which CAD manifestation(s) are reflected in the information provided by the imaging test being studied.
- This in turn affects the treatment target(s) being evaluated in a therapeutic trial
- A partial list more than one may be relevant
 - Any plaque
 - Obstructive stenosis
 - Ischemia
 - Disrupted flow
 - High risk/vulnerable plaque
 - Microvascular dysfunction
 - Inflammation

ISCHEMIA Stress Testing vs CTA For Eligibility in ISCHEMIA

Cohort characterization for eligibility: How do anatomy and physiology relate in stable patients with mod-severe ischemia on a core lab interpreted stress test?

Among otherwise eligible pts with core lab confirmed moderate-severe ischemia:

1829/5757 (31.8%) were excluded by CTA

- 66.6% no obstructive CAD
- 23.7% unprotected left main**
- 9.7% other

** "....clinical and stress testing parameters [echo and ECG] were weakly predictive of LMD on CTA. For most patients with moderate or severe ischemia, anatomical imaging is needed to rule out Left Main Disease."

JAMA Card 2019; 4(3):273 JACC 2022; 79:651

Coronary Physiology ≠ Anatomy; Physiology Is More Important: Invasive FFR

FAME 2 Circ 2018;137:1475

Measuring Coronary Physiology Noninvasively: FFR_{CT}

• Meta-analysis: 5 FFR_{CT} studies; N= 5869

• Endpoints: Death, MI, unplanned revasc

Heart 2022 doi: 10.1136/heartjnl-2021-319773

Non Obstructive CAD Carries an Unfavorable Prognosis (and is Not Detected by Stress Tests)

ATVB 2015; 35:981; Circ 2017;135:2320

Prognostic and Therapeutic Implications of Statin and Aspirin Therapy in Individuals With <u>Nonobstructive</u> <u>Coronary Artery Disease</u> - CONFIRM

- 10,418 pts w CTA; F/u median 27 months
- Statins reduce all cause death by 68%, but only in those with plaque

Prognosis with Statin Use vs Non Use

What About Inflammation?

- JUPITER: 17,802 with LDL<130 and CRP>2.0; HR 0.56
- REPRIEVE: 7800 PWH, Statin vs placebo RCT

JUPITER

40% Actual 35% 30% Additional Efficacy TNT 25% · Statin vs. control More vs. (21 trials) Proportional reduction in MVE rate (95% CI) 20% Less (5 trials 15% A to Z 10% 5% SEARCH 0% 0.8 0.0 0.5 1.0 LDL cholesterol difference between treatment groups (mmol/L

NEJM 2008; 359:2195 NEJM 2023; 389:687

REPRIEVE

Emerging Imaging Biomarkers of Inflammation: Epicardial and Pericoronary Fat Attenuation

• Intriguing, but not yet ready for prime time

Lancet 2018;392:929

Clinical Implications: What is the Disease?

- Many imaging findings (targets) are important for optimal care
- Ischemia (stress imaging) is not a reliable way to exclude high risk, obstructive CAD
- Obstructive CAD is not necessarily hemodynamically important and requires further functional information to interpret correctly
- Nonobstructive CAD is prognostically important and can be treated effectively
- Inflammation is prognostically important and can be treated effectively
- Paradigm shift: There is no single CAD phenotype which can be targeted diagnostically or therapeutically. Imaging strategies must be multidimensional or account for this heterogeneity

Imaging Trials: Chest Pain Evaluation

- Pragmatic design considerations
- Who is the patient we want to study?
- What is the disease?
- Flexibility of the intervention
- What events are we trying to avoid?

Selecting and Controlling Imaging and Subsequent Care

- When evaluating imaging strategies, is 'usual testing' the appropriate comparator?
 - Stress ECG vs stress imaging; Nuclear vs PET; Angiographic gold standard
 - What about direct to cath? (10% of PRECISE; DISCHARGE cath=CTA)
- CTA may be the preferred test. What is the optimal CTA intervention?
 - Tiered testing (CAC first): CRESCENT 97 vs 90% event-free survival, more rapid dx, less downstream testing, lower cost, less angina
 - CTA alone: PROMISE 51% more caths, 93% more revascularizations
 - Selective FFR_{CT}: PLATFORM 61% ordered caths cancelled; Up to \$4000 saved per ppt
 - CTA vs CTA +/-FFR_{CT}: FORECAST 60% CTA among UC; no diff events or costs; 24% fewer caths
- Should downstream care be mandated depending on imaging findings?

EHJ 2016; 37:1232 NEJM 2015; 372:1291 JACC 2016; 68:435 EHJ 2021; 42:3844

Sites and Core Laboratories Differ in Eligibility and Outcomes Determinations

- Core laboratories and site interpretations do not align
- Significant 'over-enrollment' by sites vs core lab measurements
 - STICH echo 18% of enrolled participants did not meet EF requirements (ie: had EFs >35%)
 - PARTNER I echo 45% mean AV <40mmHg; 18% had AVAs >0.8cm²; 13% mod-severe AR
- Similar 'overreading' by sites of coronary stenosis severity
 - PROMISE QCA –19% disagreement rate; Higher events than QCA= <50%
 - PROMISE CTA 16% disagreement rate; Higher events than core lab <50%

JASE 2012; 25:327 JASE 2015;28:210-17 AHJ 2017; 184:1 Radiology 2018; 287:87

Imaging Trials: Chest Pain Evaluation

- Pragmatic design considerations
- Who is the patient we want to study?
- What is the disease?
- Flexibility of the intervention
- What events are we trying to avoid?

Usual Evidentiary Standards for Imaging Evaluation

Clinical use

CMAJ 1986;134:587 Med Decis Making 1991;11:88 Higher Evidentiary Standards can be Used to Evaluate Imaging Outcomes

Technical capabilities

Diagnostic performance

Diagnostic thinking

Therapeutic thinking

Therapeutic strategy

Clinical outcomes

Patient satisfaction

Costs

CMAJ 1986;134:587 Med Decis Making 1991;11:88

What are Appropriate Endpoint(s) for Imaging RTCs?

- Testing utilization
 - Appropriate Use Criteria
 - Geographic variation
- Efficiency/Gatekeeper function
 - % 'normal' results/New findings
- Diagnostic or therapeutic certainty
- Angina and QOL
- Major adverse events
 - Death, CV death, MI, unstable angina, urgent revascularization, etc
- Optimization of medical therapy

Early Post PCI Stress: Rarely Appropriate By AUC Variable Intensity of Testing Use by Hospital

Overall Testing Intensity Related to Temporal Use

Overall Testing Intensity Related to Outcomes

JACC 2013 62:436

Is CTA a Better Gateway to Cath Lab Than Stress Testing?

- Standard NI testing has frequent false + and false results.
- A CTA first testing strategy increases the proportion with obs CAD at cath
- A CTA first strategy reduces cath w/o actionable CAD and improves cath lab efficiency with increased conversion rate of dx cath to PCI ('yield')

JAMA Cardiology | Original Investigation

Comparison of an Initial Risk-Based Testing Strategy vs Usual Testing in Stable Symptomatic Patients With Suspected Coronary Artery Disease The PRECISE Randomized Clinical Trial

- 2103 stable angina patients requiring testing
- Randomized to precision strategy (CTA +/-FFR_{CT} or deferred testing) versus site choice of usual testing (including invasive cath)
- Primary Endpoint: Death, MI, or Cath w/o Obstructive CAD at 12 months
- Less testing w higher positive rate (18 vs 13%)
- 24% fewer catheterizations
- Higher rate obs CAD (80 vs 40%)
- 135% higher cath yield for revasc
- 1.8x more revasc

JAMA Cardiol 2023; 8:904

Although Important, Angina is not a Good Discriminator of Imaging Effectiveness

- CLARIFY registry: 32,691 pts with stable CAD
- Among the 7212 with angina, this 'disappeared' in 40% wo intervention at 1 y
 - 5 y outcomes similar to those who had never had angina
- Among those w/o angina, new onset 2-5%/y
- At 5 years, 7773 had controlled angina (84% wo intervention, 11% med Rx, 5% revasc)
- ORBITA1 &2: No difference in exercise time but less angina at 12 wks with PCI vs sham

Circulation 2021;144:512 Lancet 2018; 391:31 NEJM 2023; 389:2319 JAMA Cards 2023; 8:904 CTA: Enhanced Use of Preventive Medications: Diagnostic and Therapeutic Thinking

JAHA 2016; 5 pii: e003807 JACC 2016; 67:1759 JAMA Cards 2023; 8: 904

PRECISE

Lipid-lowering M	ledication Use (%)
50	
45	
40 35 30	P<0.001
Antiplatelet Med	dication Use (%)
50	
45	
40	
30	
25 20	P<0.001
Anti-hypertensiv	e Medication Use (%)
70	
65	
60	
55	
50	
45	P=0.10
40	

PROMISE 1° and 2° Endpoints: Results Depend on Endpoint and Timeframe

se -----

pr

NEJM 2015; 372:1291

SCOT-HEART: Six Week and Five Year Results

Six week results (Primary report)

- 1° endpoint: Dx of angina due to CAD
 - Improved dx thinking
- 2° endpoint: \downarrow CV Death/MI (NS)

• Improved outcomes

NEJM 2018 379:924 JACC 2019 74:2058

Lancet 2015; 385:2383

Cost in Chest Pain RCTs

- RCT 2103 stable sx pts
- Precision : CTA +/-FFR_{CT} or deferred testing vs Usual care (incl cath)
- Some variation in types of costs
- Improved efficiency with little net effect on costs

Overall Cost Differences at 1 Year

AHA 2023

Clinical Implications: What Events are We Trying to Avoid?

- Angina may not effectively discriminate between strategies
- Given the low risk of the stable chest pain population, use of MACE type endpoints is largely infeasible (although still important for safety)
 - Little room for improvement in outcomes
 - Low death/MI event rates require large sample size and long follow up, and limit precision
- Intermediate endpoints such as diagnostic and therapeutic thinking are useful with impact on treatment (preventive medications, revascularization) being a major determinant of long term value
- Process of care/efficiency measures are important
- Costs are rarely a significant factor in comparing different testing approaches

Imaging Trials: Chest Pain Evaluation

- Pragmatic design considerations
- Who is the patient we want to study?
- What is the disease?
- Flexibility of the intervention
- What events are we trying to avoid?

THANK YQU !!