Assessment of the Human Systemic Absorption of Sunscreen Active Ingredients: FDA-Sponsored Randomized Clinical Trial

NIH Collaboratory Grand Rounds
Jan 17, 2020

Murali Matta, PhD
Bioanalytical Lead
Division of Applied Regulatory Science
Office of Clinical Pharmacology
U.S. Food and Drug Administration
Disclaimer

This presentation reflects the views of the speaker and should not be construed to represent FDA’s views or policies.
Overview

• Background
• Primary Objective
• Study Design
• Outcomes
• Results
• Conclusions
• Coming Next
Background

- Sunscreens prevent sunburn - reflect or absorb ultraviolet radiation
- Sunscreen products applied in substantial amounts multiple times every day over course of lifetime
- Active ingredients are organic chemicals, some have been shown to be absorbed through human skin with detectable levels in the blood or urine
- Little known about the systemic exposures, understanding the systemic exposure and its clinical relevance is important
- FDA guidance “Nonprescription Sunscreen Drug Products Safety and Effectiveness Data” requests the assessment of the human systemic absorption of sunscreen ingredients with a Maximal Usage Trial (MUsT).
- This study is not intended to meet all requirements of MUsT studies, but will follow many of the principles to assess maximal use of a single sunscreen formulation
Primary Objective

• To explore whether the active components of 4 sunscreen products are absorbed into the systemic circulation when a sunscreen product is applied under maximal-use conditions
 • Avobenzone
 • Oxybenzone
 • Octocrylene
 • Ecamsule
Tested Products

- Spray
 - Avobenzone 3%
 - Oxybenzone 6%
 - Octocrylene 2.35%
 - Homosalate 15%
 - Octisalate 5%

- Spray
 - Avobenzone 3%
 - Oxybenzone 5%
 - Octocrylene 10%

- Lotion
 - Avobenzone 3%
 - Oxybenzone 4%
 - Octocrylene 6%

- Cream
 - Avobenzone 3%
 - Octocrylene 10%
 - Ecamsule 2%
Study Design

- Subjects: Healthy Volunteers; 18 – 60 years
- Open-label, randomized 4 group parallel study

- Dose: 2 mg/cm²
 75% of body

- Duration: Every two hours, 4 doses/day; 4 days

- PK sample: 30 samples
 pre-dose to 144 h
 (intensive on days 1 & 4)
Outcomes

• **Primary Outcome:**
 • Maximum plasma concentration (Cmax: day 1 to 7) of Avobenzone

• **Secondary Outcome:**
 • Maximum plasma concentration of Oxybenzone, Octocrylene and Ecamsule

• **Exploratory Outcomes:**
 • C_{max} on day 1 and 4
 • Time at which Cmax occurs on day 1, 4 and overall
 • AUC on day 1, 4 and overall
 • Residual concentrations on each day
 • Half-life of each ingredient

• **Post-hoc Assessments:**
 • Number and percentage of participants with plasma concentration exceeding 0.5 ng/mL on day 1
 • Drug accumulation from day 1 to 4
Statistical Analysis

- 24 participants were randomized to receive 1 of the 4 treatments
- Randomization was conducted in block sizes of 4
- Not blinded due to differences in formulation types
- Data was reported with standard descriptive statistics
- Accumulation with repeat dosing was assessed by log-transforming AUC and maximum plasma concentration from day 1 and 4 for each ingredient
Demographics

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Study (N=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (Mean ± SD)</td>
<td>35.5 ± 10.5</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>14 (58.3 %)</td>
</tr>
<tr>
<td>White</td>
<td>9 (37.5 %)</td>
</tr>
<tr>
<td>Asian</td>
<td>1 (4.2%)</td>
</tr>
<tr>
<td>Body mass index, kg/m² (Mean ± SD)</td>
<td>25.0 ± 2.9</td>
</tr>
<tr>
<td>Body surface area, m² (Mean ± SD)</td>
<td>1.8 ± 0.2</td>
</tr>
<tr>
<td>Fitzpatrick skin type</td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>0 (0.0 %)</td>
</tr>
<tr>
<td>Type 2</td>
<td>1 (4.2%)</td>
</tr>
<tr>
<td>Type 3</td>
<td>5 (20.8%)</td>
</tr>
<tr>
<td>Type 4</td>
<td>4 (16.7%)</td>
</tr>
<tr>
<td>Type 5</td>
<td>8 (33.3%)</td>
</tr>
<tr>
<td>Type 6</td>
<td>6 (25.0%)</td>
</tr>
</tbody>
</table>
Systemic Exposure of Avobenzone

Matta et al., JAMA 2019;321(21):2082-2091
Systemic Exposure on Day 1

Spray#1: 8h – 100%
Spray#2: 8h – 83%
Lotion: 8 h – 100%
Cream: 8h – 83%

Matta et al., JAMA 2019;321(21):2082-2091
Systemic Exposure of Oxybenzone

Matta et al., JAMA 2019;321(21):2082-2091
Systemic Exposure on Day 1

100% of subjects had levels above 0.5ng/mL in 2hrs

Matta et al., JAMA 2019;321(21):2082-2091
Systemic Exposure of Octocrylene

Matta et al., JAMA 2019;321(21):2082-2091
Systemic Exposure on Day 1

100% of subjects in 6h
Except Spray#1

Matta et al., JAMA 2019;321(21):2082-2091
5 of 6 participants has C_{max} more than 0.5 ng/mL on day 1

Matta et al., JAMA 2019;321(21):2082-2091
C_{max} on Day 1 versus Day 4

![Chart showing concentration (ng/ml) for Avobenzone, Oxybenzone, and Octocrylene on Day 1 and Day 4. The chart indicates a higher concentration on Day 4 for each compound.](chart.png)
Residual Concentrations

The diagram shows the residual concentrations of different analytes over time. The analytes include Avobenzone, Oxybenzone, and Octocrylene. The concentrations are measured in ng/ml and are represented at different time points (95, 120, 144). The data points indicate the variability in concentration over time for each analyte.
Conclusions

• All active ingredients in all tested products exhibited systemic exposures above the threshold for potentially waiving some nonclinical toxicology studies for sunscreens

• The systemic exposures supports the need for further studies to determine the clinical significance

• These results do not indicate that individuals should refrain from the use of sunscreen
Coming Next

• A second clinical study was performed to characterize:
 – Systemic exposure of additional active ingredients
 – Systemic exposure after a single application
 – Time to clear from body
Study Design of Second Clinical Trial

- Subjects: Healthy Volunteers; 18 – 60 years; More subjects
- Open-label, randomized 4 group parallel study

Dose: 2 mg/cm²
75% of body

Single Application on Day 1
Four applications per day from day 2 to 4

PK samples: 30 samples pre-dose to 480 h
(intensive on days 1 & 4)

Skin sample: Tape stripping (Day 7 and 14)
Acknowledgements

Division of Applied Regulatory Science
David Strauss, MD, PhD
Nageswara Pilli, PhD
Jeffry Florian, PhD
Robbert Zusterzeel, MD, PhD, MPH
Vikram Patel, PhD
Donna Volpe, PhD

Division of Nonprescription Drug Products
Steven Adah, PhD
Sergio Coelho, PhD
Theresa Michele, MD

Office of Clinical Pharmacology
Dennis Bashaw, PharmD
Issam Zineh, PharmD, MPH

Division of Clinical Pharmacology-III
Luke Oh, PhD

Division of Pharmaceutical Quality and Research
Yang Yang, PhD
Ashraf Muhammad, PhD
Celia Cruz, PhD

Office of Drug Evaluation IV
Jian Wang, PhD
Lesley-Anne Furlong, MD
Charles Ganley, MD

Spaulding Clinical Research
Sarah Kemp, RN
Anthony Godfrey, PharmD
Carlos Sanabria, MD
Preliminary Communication

May 6, 2019

Effect of Sunscreen Application Under Maximal Use Conditions on Plasma Concentration of Sunscreen Active Ingredients
A Randomized Clinical Trial

Murali K. Matta, PhD; Robert Zusterzeel, MD, PhD; MPH; Nageswara R. Pilli, PhD; Vikram Patel, PhD; Donna A. Volpe, PhD; Jeffry Florian, PhD; Luke Oh, PhD; Edward Bashaw, PharmD; Issam Zineh, PharmD; MPH; Carlos Sanabria, MD; Sarah Kemp, RN; Anthony Godfrey, PharmD; Steven Adah, PhD; Sergio Coelho, PhD; Jian Wang, PhD; Lesley-Anne Furlong, MD; Charles Ganley, MD; Theresa Michele, MD; David G. Strauss, MD, PhD

Author Affiliations | Article Information

1Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
2Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
3Spaulding Clinical Research, West Bend, Wisconsin
4Division of Nonprescription Drug Products, Office of Drug Evaluation IV, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
5Office of Drug Evaluation IV, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland

May 6, 2019

Filling in the Evidence About Sunscreen

Robert M. Califf, MD; Kanade Shinkai, MD, PhD

Author Affiliations | Article Information

1Duke Forge, Duke University School of Medicine, Durham, North Carolina
2Verily Life Sciences (Alphabet), South San Francisco, California
3Department of Dermatology, University of California, San Francisco
4Editor in Chief, JAMA Dermatology
