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CRT: Randomized in groups or clusters

Cluster randomized trials are experiments in which intact social units or
clusters of individuals rather than independent individuals are randomly
allocated to intervention groups.

Logistic convenience and acceptability; avoid contamination
Source of the Figure: Moyer, Jonathan, ”The Perils and Pitfalls of Complex Clustering in Pragmatic Trials”, Available at

https://dcricollab.dcri.duke.edu/sites/NIHKR/KR/GR-Slides-11-03-23.pdf
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Data structure in CRTs

Cluster Unit Covariates Treatment Outcome
Individual-level Cluster-level Indicator (A)

1 1 X11 Z1 1 Y11
1 2 X12 Z1 1 Y12
. . . . . . . . . . . . . . . . . .
1 n1 X1n1 Z1 1 Y1n1
2 1 X21 Z2 0 Y21
2 2 X22 Z2 0 Y22
. . . . . . . . . . . . . . . . . .
2 n2 X2n2 Z2 0 Y2n2
. . . . . . . . . . . . . . . . . .

M 1 XM1 ZM 0 YM1
… . . . . . . . . . . . . . . .
M nM XMnM ZM 0 YMnM

In what follows, we use Xi = {[Xij]j=1,...,ni ,Zi} to denote the collection of
covariates from cluster i (including cluster-level covariates Zi),
Yi = [Yij]j=1,...,ni to denote the vector of outcomes in cluster i, i=1,…,M.
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Missing outcome data in CRTs

Cluster Unit Covariates Treatment Outcome
Individual-level Cluster-level Indicator (A)

1 1 X11 Z1 1 Y11
1 2 X12 Z1 1 Y12
. . . . . . . . . . . . . . . . . .
1 n1 X1n1 Z1 1 Y1n1
2 1 X21 Z2 0 Y21
2 2 X22 Z2 0 Y22
. . . . . . . . . . . . . . . . . .
2 n2 X2n2 Z2 0 Y2n2
. . . . . . . . . . . . . . . . . .

M 1 XM1 ZM 0 YM1
… . . . . . . . . . . . . . . .
M nM XMnM ZM 0 YMnM
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Multilevel missingness in CRTs

Cluster Unit Outcome Cluster Unit Outcome

1 1 Y11 1 1 Y11
1 2 ? 1 2 ?
. . . . . . . . . . . . . . . . . .
1 n1 Y1n1 1 n1 Y1n1

2 1 Y21 2 1 ?
2 2 Y22 2 2 ?
. . . . . . . . . . . . . . . ?
2 n2 ? 2 n2 ?

. . . . . . . . . . . . . . . . . .

M 1 ? M 1 ?
… . . . . . . . . . . . . . . .
M nM YMnM M nM YMnM
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Missing outcome data in CRTs is common

In a review by Fiero et al. (2016), among 86 CRTs,
80 (93%) reported having some missing data at the individual level

27 (31%) reported having whole clusters missing
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Data and missingness mechanisms

Full data: data we would want to collect for all individuals in the
sample, {(Yij,Xij,Zi,Ai), j = 1, . . . , ni, i = 1, . . . ,M}

Observed data: data are actually observed, some are missing,
{(Rij,YijRij,Xij,Zi,Ai), j = 1, . . . , ni, i = 1, . . . ,M}.

Missingness mechanisms (Rubin 1976):
Missing completely at random (MCAR): the probability of
missingness does not depend on observed or unobserved information

Missing at random (MAR): conditional on the observed data, the
probability of missingness is independent of unobserved data

Missing not at random (MNAR): neither MCAR nor MAR

Complete data: data from subsets of individuals without missing
data, {(Rij = 1,Yij,Xij,Zi,Ai), j = 1, . . . , ni, i = 1, . . . ,M}
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Outcome missing mechanisms in CRTs

MCAR: the missing process is independent of Xi, Ai, and Yi

MAR: the missing process can depend on the observed data

Any component of Yi can be missing and there is no natural
ordering of individual outcomes within a cluster, the missingness
pattern can not be assumed as monotone missingness as in the
longitudinal data setting.

A stronger version of MAR is typically assumed.

Restricted MAR (rMAR): the probability that the outcome for one
individual is missing is independent of all outcomes (including the
observed outcomes) in the same cluster, conditional on covariates Xi
and treatment Ai.
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Average treatment effect and ICC
Interests focus on making an inference about some aspect of the
distribution of the full data based on the observed data

One main goal of CRTs is to estimate the average treatment effect,
defined as

∆ = f(E[Yij | Ai = 1],E[Yij | Ai = 0]),
where f is a function defining the scale of interest:

f(x, y) = x − y: difference in means, risk difference

f(x, y) = x(1 − y)/{(1 − x)y}: odds ratio

Covariates Xij and Zi are auxiliary variables

Also of interest is to estimate the intraclass correlation coefficient
(ICC): measures the extend to which outcomes are correlated within
the same cluster

Two analytic challenges:
Outcome can be missing

Data for individuals within each cluster are likely to be correlated.
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Commonly-used analysis strategies for CRTs
Two modeling approaches:

Mixed effects models via maximum likelihood estimation (Laird and
Ware 1982)

Population average models fitted with generalized estimating
equation (GEE) approaches (Liang and Zeger 1986)

Likelihood-based inference in general requires the correct
specification of the full likelihood, including the within-cluster
correlation structure, which may be hard to specify
The GEE estimator

focuses on population average effects rather than cluster specific
effects

requires fewer parametric assumptions

is robust to misspecification of the correlation structure

Hubbard et al. (2010) compared population average and mixed
models

Murray et al. (2004) and Turner et al. (2017) reviewed various
methodological developments for the analysis of CRTs
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The GEE estimator for the average treatment effect

The standard GEE estimator solves the following estimating
equations:

0 =
M∑

i=1
DT

i V−1
i (Yi − µi),

where µi = (µi1, . . . , µini)
T, and µij = E(Yij | Ai) = g−1(β0 + βAAi),

Di = ∂µi/∂θT and Vi is a working covariance matrix for Yi.

g(·) is a link function. If g is the identity link, βA represents
difference in means for a continuous outcome:

βA = E(Yij | Ai = 1)− E(Yij | Ai = 0).

Vi does not need to be correctly specified. Variance for
β̂ = (β̂0, β̂A)T is typically estimated using a sandwich variance
estimator (can be obtained by standard software in R ‘geepack’ or
SAS proc GEE).
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Analysis strategies in the presence of missing data

When data are MCAR, the standard GEE estimator based on
complete data is consistent and asymptotically normal

When data are MAR, the standard GEE estimator based on
complete data may yield biased estimates

Potential solutions under rMAR:
Multiple imputation (MI-GEE): requires specification of an
imputation model for E(Yij | Xi,Ai)

Inverse probability weighting (IPW-GEE): requires specification of a
propensity score model for P(Rij = 1 | Xi,Ai)

Augmented inverse probability Weighting (AIPW-GEE): requires
specification of a propensity score model for P(Rij = 1 | Xi,Ai) and
an outcome model for E(Yij | Xi,Ai)

“Multiply robust” AIPW-GEE: allows specification of a set of models
for the propensity score model and a set of models for the outcome
model, requires one model to be correctly specified
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Multi-level multiple imputation (MMI-GEE)

Steps:
Missing values are imputed multiple times using a full-parametric
model

Resulting complete data sets are analyzed using a standard GEE
approach

Results are then combined across multiple imputed datasets (Rubin
2004)

For CRTs, two practical considerations:
The imputation model must properly account for the multi-level data
structure

Use treatment arm specific imputation model

For more MI for CRTs, please see Dr. Rebecca Andridge’s talk at:
https://prevention.nih.gov/education-training/
methods-mind-gap/
multiple-imputation-methods-group-based-interventions
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Inverse probability weighting (IPW-GEE)

Reweighting complete cases according to the probability of being
observed (Robins et al., 1995) so that an individual with complete
data is considered representative of him/herself as well as a number
of similar subjects that had dropped out from the study

0 =
M∑

i=1
DT

i V−1
i Wi[Yi − µi],

where Wi = diag[Rij/π̂ij]j=1,...,ni , π̂ij can be obtained by fitting a
binary response model that regresses the indicator Rij on functions
of Ai and Xi, referred to as the propensity score model

The resulting estimator is consistent and asymptotically normal
provided that the propensity score model is correctly specified:

πij(Xi,Ai; ηW) = P(Rij = 1 | Xi,Ai),

for some ηW.
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MMI-GEE vs. IPW-GEE
Simulation studies report comparable performance of MMI-GEE and
IPW-GEE in CRTs with missing binary outcome data (Turner et al., 2020)

black: complete case analysis; red: adjusted complete case analysis; orange:
MMI-GEE; blue: IPW-GEE; teal: IPW-GEE accounting for clustering when
estimating the weights
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Augmented IPW-GEE

In practice, we may not know whether the propensity score model is
correct specified. Can augment the estimating equation with a term that
relates the outcome to covariates and treatment (Prague et al., 2016).

0 =
M∑

i=1
[DT

i V−1
i Wi(Yi − Bi) +

∑
a=0,1

pa(1 − p)1−aDT
i V−1

i (Bi − µi)],

where p = P(Ai = 1), Bi(Xi,Ai = a; ηB) is referred to as the outcome
model, it is correctly specified when

Bij(Xi,Ai = a; ηB) = E(Yij | Xi,Ai = a)

for some parameters ηB .

Enjoys the doubly robust property: the resulting AIPW-GEE estimator is
consistent and asymptotically normal if either the propensity score model
or the outcome model is correctly specified.
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Estimating the intraclass correlation coefficient (ICC)

Second-order estimating equations based on pairs of observations
can be used to estimate the intraclass correlation coefficient (Zhao
and Prentice 1990, Yan and Fine 2004, Yi and Cook 2002)

Chen et al. (2020) adopt a specific parametrization that targets the
treatment-specific ICC ρi

0 =
M∑

i=1
DT

i V−1
i (Yi − µi), logit(µi) = β0Y + βAYAi

0 =
M∑

i=1
D̃−1

i ṼT
i (E(Yi)− ρi), atanh(ρi) = α0Y + αAYAi

E(Yi) =

[
(Yij − µi)(Yij′ − µi)

µi(1 − µi)

]
j<j′
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Complete case analysis leads to bias

Simulate correlated binary data for outcome Yij and missingness
indicator Rij with number of clusters M = 2000 and cluster sizes
ni ∈ {81, · · · , 140}

× True value —– Complete Case GEE2
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IPW-GEE2

IPW-GEE1:
Yij − µi 7→

Rij
πij

(Yij − µi)

πij is the propensity score model for P[Rij = 1|Xi,Ai]

IPW-GEE2:
(Yij − µi)(Yij′ − µi)

µi(1 − µi)
− ρi 7→

RijRij′

ηijj′

[
(Yij − µi)(Yij′ − µi)

µi(1 − µi)
− ρi

]

ηijj′ is a model for E[RijRij′ |Xi,Ai], referred to as the second-order
propensity scores

Ignoring “correlated missingness” [ηijj′ = πijπij′ ] can lead to biased
α̂Y.
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IPW-GEE2 – PS models correctly specified

× True value —– Complete Case GEE2 G1(R) IPW-GEE2 —– G2(R) IPW-GEE2
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Doubly robust estimator

Can similarly derive the DR estimator, which is consistent and
asymptotically normal under correct specification of either the
outcome model or the propensity score model

Denote κ = (βY, αY, ηW, ηB) and

Ψi(κ) =

Φ̃Y
i (Ai,Xi,Ri, βY, αY, ηW, ηB)

SW
i (Ai,Xi, ηW)

SB
i (Ai,Xi, ηB)


By standard results for M-estimators,√

M(κ̂− κ0)
D→ N(0, Γ−1∆(Γ−1)⊺), where

∆ = E [Ψ(κ0)Ψ(κ0)
⊺] and Γ = E

[
∂Ψ(κ0)

∂κ⊺

]
from which we can extract components corresponding to (β̂Y, α̂Y).
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Simulation results: Both propensity score and outcome models correct

M = 2000 with ni ∼ Unif{80, · · · , 140}
0.1

4
0.1

5
0.1

6
0.1

7
0.1

8

β0Y

0.1
50

0.1
55

0.1
60

0.1
65

0.1
70

0.1
75

0.1
80

0.1
85

βAY

0.1
20

0.1
25

0.1
30

0.1
35

0.1
40

α0Y

0.0
73

0
0.0

73
5

0.0
74

0
0.0

74
5

0.0
75

0
0.0

75
5

0.0
76

0
0.0

76
5

αAY

× True value —– Complete Case GEE2 —– G1(R) IPW-GEE2 —– G2(R)
IPW-GEE2 —– DR-GEE2
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Simulation results: Only the outcome model correct

M = 2000 with ni ∼ Unif{80, · · · , 140}
0.1

4
0.1

5
0.1

6
0.1

7
0.1

8

β0Y

0.1
50

0.1
55

0.1
60

0.1
65

0.1
70

0.1
75

0.1
80

0.1
85

βAY

0.1
20

0.1
25

0.1
30

0.1
35

0.1
40

α0Y

0.0
73

0.0
74

0.0
75

0.0
76

0.0
77

0.0
78

αAY

× True value —– Complete Case GEE2 —– G1(R) IPW-GEE2 —– G2(R)
IPW-GEE2 —– DR-GEE2
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Computational challenges with fitting GEEs

Computational challenges in solving GEEs has been noted by many
(Carey et al., 1993; Yan and Fine 2004)

Second-order GEEs include an extra set of estimating equations,
involving all possible pairs of observations

The computing complexity increases quadratically as the cluster
sizes increase

Solving GEEs with large cluster sizes becomes difficult due to both
convergence and memory allocation issues

Chen et al. (2020) proposes stochastic algorithms to alleviate this
issue: at each Newton-Raphson iteration, only use a subsample
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Parallel stochastic GEE algorithm

Stochastic GEE allow faster computation in each iteration, but each
iteration is not as informative due to the induced missingness

Instead of one chef cooking ten meals, hire ten chefs to cook each
meal

Improve on convergence by intrinsically incorporating information in
its multistart search
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AIPW-GEE: A multiply robust version

AIPW-GEE estimator is consistent and asymptotically normal if
either the propensity score model for the outcome missingness or the
covariate-conditional mean outcome model is correctly specified

A multiply robust version (Rabideau et al., 2024): Consider
specification of multiple propensity score models and multiple
covariate-conditional mean outcome models, the resulting estimator
is consistent and asymptotically normal as long as one model is
correctly specified, for example:

Set Label Model Correct
PS 0 logit{π(X, A)} = θI + θAA + (X1, X2, X2

2, X3
2, eX3 )ν Yes

Model 1 logit{π(X, A)} = θ
(1)
I + θ

(1)
A A + (1X1>0, 1X2>−1, X3)ν

(1) No
2 logit{π(X, A)} = θ

(2)
I + θ

(2)
A A + X2ν

(2) No
Outcome 0 E(Y|X, A) = βI + βAA + (X1, X2, X2

2, X3
2, eX3 )ζ Yes

Model 1 E(Y|X, A) = β
(1)
I + β

(1)
A A + (1X1>0, 1X2>−1, X3)ζ

(1) No
2 E(Y|X, A) = β

(2)
I + β

(2)
A A + X2ζ

(2) No

An R package for fitting a MR-GEE is available at
https://github.com/djrabideau/mrgee
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Multiple-level IPW-GEE

So far we focus on missingness at the individual-level, i.e., no empty
clusters

Entire clusters (or subclusters) can be missing in CRTs with a
multi-level structure

An example of a CRT with multiple level missingness:
A CRT was conducted to evaluate if proactive community care
management (pro-CCM) is effective in reducing malaria burden in
rural endemic area of Madagascar, twenty-two fokontanies (smallest
administrative units) were randomized to pro-CCM or conventional
integrated community case management (Ratovoson et al. 2022)

The study participants were nested in households, which were nested
in each fokontany

About 24% of study participants and 22% of the households were
lost to follow-up due to moving away, absence, death, or refusal to
participate
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Multi-level missingness process

In addition to the individual-level missingness indicators Rij,
introducing a cluster-level missingness indicator Ci

A cluster-level missingness model: λ(Ai,Zi; γ) = P(Ci = 1 | Ai,Zi)

An individual-level missingness model:
π(Ai,Zi,Xij | Ci = 1; η) = P(Rij = 1 | Ci = 1,Ai,Zi,Xij)

Weights given by
Wi = diag[RijCi

πijλi
]j=1,...,ni .

Can specify a set of models for λ and a set of models for π
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Misclassification of cluster-level missingness indicator
When cluster sizes are small, the observed cluster-level missingness
indicator may be misclassified in the sense that, when no outcomes are
observed in a cluster (e.g., cluster 2), we may not know whether it is due
to the cluster being withdrawn or due to all individual outcomes being
missing

Cluster Rij CO
i Ci

0 0 0
1 0 0 0

0 0 0
0 0 1

2 0 0 1
0 0 1
1 1 1

3 0 1 1
0 1 1

Incorporate an Expectation-Maximization (EM) algorithm (Dempster et
al., 1977) to learn about the true Ci in estimation of nuisance parameters
in the individual-level and cluster-level propensity score models
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Summary of modeling and estimation methods
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