Blood Pressure Medication Timing Study (BPMedTime)

Gary E. Rosenthal, MD
Professor of Internal Medicine & Health Management & Policy
Director, Institute for Clinical and Translational Science

Elizabeth Chrischilles, MS, PhD
Professor and Marvin A. and Rose Lee Pomerantz Chair in Public Health
Director, Health Effectiveness Research Center

August 2, 2013
Blood Pressure Medication Timing Study (BPMedTime)

Investigative Team

University of Iowa
Barry Carter, PharmD; David Eichmann, PhD; Juan Pablo Hourcade, PhD; David Klein, PhD; Jennifer Robinson, MD, MPH; Helen Schartz, PhD, JD; Christian Simon, PhD; Mark Vander Weg, PhD; Bridget Zimmerman, PhD, Bryan Gryzlak, MS

Duke University
Eric Eisenstein, DBA; Bimal Shah, MD, MBA, Swati Charkraborty, MS
Overview of Presentation

- Rationale and aims of the proposed UH3 trial
- Overview of trial design
- Strategies for subject recruitment, obtaining informed consent, implementing nighttime doing intervention, and data collection
 - *Recent refinements to improve efficiency and decrease costs*
- Next steps in preparing for UH3 trial
Rationale for Pragmatic Trial

- BP exhibits circadian variability → lower during sleep ("nighttime dipping") with increase on arising (may explain excess risk of AMI during early am)

- Sleeptime BP stronger predictor of CV events than office BP measurements or average daily BP as captured by 24 hour ABPM

- Nighttime **non-dipping** (systolic BP decline < 10%) is strong predictor of CV risk in patients with HTN & is particularly common in DM and CKD
Many once-daily BP meds require 60-90 minutes to achieve peak plasma levels after ingestion & do not sustain plasma levels for a full 24 hours.

Thus, when taken in AM, plasma levels may not be high enough to protect against AM surge in BP.

Three recent Spanish trials led by Hermida found that patients randomized to take ≥1 BP meds at night had a roughly 65% reduction in CV events:
- Death, AMI, CVA, TIA, angina, coronary revascularization, lower extremity arterial occlusion, retinal artery thrombosis
Why is Nighttime Dosing an Ideal Topic for a Pragmatic Trial?

- HTN is common problem & major CV risk factor
- Patients eligible for intervention can be identified through EMR
- Key study endpoints (adverse CV events) can be captured through EMR and other extant sources
- Nighttime dosing can be implemented in practice w/o the need for sophisticated infrastructure
- Intervention has high potential for sustainability if pragmatic trial confirms prior clinical trials
Aims of Pragmatic Trial

1. Examine the impact of nighttime dosing of BP medications on:
 - CV events → primary endpoint
 - clinic BPs, self-reported medication adherence, HRQOL, and healthcare utilization → secondary endpoints

2. Implement EMR-based approaches to increase the efficiency of subject recruitment and web-based platforms for obtaining informed consent and collecting patient-reported outcomes
Overview of Trial Design

- 2 partnering study sites: University of Iowa & Duke University

- Subjects identified from EMR eligibility criteria
 - Diagnoses of HTN & ≥ 1 comorbid conditions that increase cardiovascular risk
 - Active prescriptions for ≥ 1 once-daily anti-hypertensive medications (excluding diuretics)
 - Prior visits to General Medicine, Family Medicine, Cardiology, or Nephrology clinics
Overview of Trial Design (cont.)

- Patient-level randomization → Eligible patients randomized to: (1) nighttime dosing of ≥ 1 more BP medications or (2) control
- Informed consent obtained using online interactive module (preferred) or mailed consent letter
- Patients followed for 36-42 months with f/u contacts every 6 months via online PHR or survey
- Primary and secondary endpoints obtained from EMR, PHR, written surveys, and extant data (Medicare claims, hospital discharge abstracts, & death certificates)
Overview of Trial Design (cont.)

Primary Endpoint

- CV events → CV death or hospital admissions for AMI, IHD, CVA, CHF, or coronary, cerebral, or peripheral revascularization

Secondary Endpoints

- Clinic BP during outpatient visits
- Self-reported med adherence
- Health-related quality of life
- Resource utilization (counts of admissions, ER visits, and clinic visits)
Overview of Trial Design (cont.)

Analytic Approach

- Analyses will use generalized linear models (i.e., Poisson or negative binomial regression) for event counts of binary endpoints, including the primary outcome – CV events.

- Independent variables in the model will include study group, study site, and baseline covariates that are found to differ between the study groups.

- Models will be fit using generalized estimating equations (GEE) method to account for possible correlation of outcomes between subjects of the same MD.
Overview of Trial Design (cont.)

Analytic Approach – Sample size determination

- Assumptions underlying sample size estimation of **2607 patients** per group:
 - Attrition rate of 10% per year, resulting in average follow-up of 2.7 years
 - Statistical test compares Poisson rates between patients in intervention and control groups
 - Event rate in control group of 0.05 per-person year with power to detect 20% relative difference in event rates between intervention and control groups
 - 2-tailed test with $\alpha = .05$ and power = 0.80
Sample Size Requirements per Group in Relation to Event Rate & Effect Size

Effect Size of Nighttime Dosing

<table>
<thead>
<tr>
<th>Event Rate</th>
<th>10%</th>
<th>15%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>35%</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>16,509</td>
<td>7,145</td>
<td>3,910</td>
<td>2,433</td>
<td>1,642</td>
<td>1,378</td>
<td>869</td>
</tr>
<tr>
<td>15%</td>
<td>11,006</td>
<td>4,763</td>
<td>2,607</td>
<td>1,622</td>
<td>1,095</td>
<td>919</td>
<td>580</td>
</tr>
<tr>
<td>20%</td>
<td>8,255</td>
<td>3,573</td>
<td>1,955</td>
<td>1,217</td>
<td>821</td>
<td>689</td>
<td>435</td>
</tr>
<tr>
<td>25%</td>
<td>6,604</td>
<td>2,858</td>
<td>1,564</td>
<td>974</td>
<td>657</td>
<td>552</td>
<td>348</td>
</tr>
</tbody>
</table>
Key Modifications to Study Design and Implementation

1. Changes to study protocol changes to allow for increased sample size (1,160 → 5,200) to reflect the smaller effect size (i.e., 20%).
 - *Result is a more efficient, pragmatic design*
 - *Take advantage of expanded primary care sites via new UI Health Alliance ACO*

2. Protocol changes to collect documentation of consent (due to ongoing OHRP deliberation about minimal risk determination)
 - *Potential decrease in efficiency*
Key Modifications to Study Design and Implementation (cont.)

3. Strategies to enhance data collection efficiency
 - Events for primary endpoint (admissions for AMI, CVA, IHD, CHF, and revasc) determined from billing codes in lieu of clinical adjudication of event as originally planned
 - EMR & billing data as source for events at UI & Duke
 - Medicare claims data for out of system events for fee for service Medicare beneficiaries
 - Hospital discharge summaries for out of system events events in non-Medicare patients and events in Year 4 for Medicare beneficiaries
 - Scaled back PHR & survey data collection for secondary endpoints (HRQOL, adherence, and adverse events)
Protocol for Recruitment & Implementation of Nighttime Dosing

Potential subjects identified via EMR; mailings prepared
Enrollment packets sent; baseline survey completed
Continued eligibility determined
Randomization: identification of nighttime medications; pharmacist review of selected meds

4 weeks 2 weeks 2 weeks 1-3 weeks

Pretreatment (recurs monthly) Intervention

Study group notification to subject

Morning dosing schedule N = 2607
Nighttime dosing schedule N = 2607
- Follow-up surveys every 6 months
- Out-of-system releases

Closeout survey

36-42 months

The University of Iowa
Duke Medicine
Protocol for Recruitment & Implementation of Nighttime Dosing

Potential subjects identified via EMR; mailings prepared

Enrollment packets sent; baseline survey completed

Continued eligibility determined

Randomization: identification of nighttime medications; pharmacist review of selected meds

Study group notification to subject

Morning dosing schedule, N = 2607

Nighttime dosing schedule, N = 2607

- Follow-up surveys every 6 months
- Out-of-system releases

Closeout survey

Pretreatment (recurs monthly)

Intervention

4 weeks

2 weeks

2 weeks

1-3 weeks

36-42 months

URL for online option

BP Med list

Physician Cover letter
Protocol for Recruitment & Implementation of Nighttime Dosing

Reconciliation of BP meds with Patient report

Patient-adjudicated version used to implement intervention

Study group notification to subject

Closeout survey

- Morning dosing schedule N = 2607
- Nighttime dosing schedule N = 2607
 - Follow-up surveys every 6 months
 - Out-of-system releases

Potential subjects identified via EMR; mailings prepared
Enrollment packets sent; baseline survey completed
Continued eligibility determined

Randomization: identification of nighttime medications; pharmacist review of selected meds

4 weeks 2 weeks 2 weeks 1-3 weeks 36-42 months

Pretreatment (recurs monthly) Intervention

The University of Iowa

Duke Medicine
Protocol for Recruitment & Implementation of Nighttime Dosing

Potential subjects identified via EMR; mailings prepared
Enrollment packets sent; baseline survey completed
Continued eligibility determined

Randomization: identification of nighttime medications; pharmacist review of selected meds

Study group notification to subject

Semi-automated determination of nighttime meds

Patient-adjudicated BP med list used to implement intervention

Morning dosing schedule N = 2607
Nighttime dosing schedule N = 2607
- Follow-up surveys every 6 months
- Out-of-system releases

Closeout survey

Intervention

Pretreatment (recurs monthly)
Protocol for Recruitment & Implementation of Nighttime Dosing

Streamlined (q 6 mo) adherence, AEs (minimal) and cardiac events

Potential subjects identified via EMR; mailings prepared
Enrollment packets sent; baseline survey completed
Continued eligibility determined
Randomization: identification of nighttime medications; pharmacist review of selected meds
Study group notification to subject

Pretreatment (recurs monthly) Intervention

Morning dosing schedule N = 2607
- Follow-up surveys every 6 months
- Out-of-system releases

Closeout survey

Nighttime dosing schedule N = 2607

4 weeks 2 weeks 2 weeks 1-3 weeks 36-42 months
Updates on Other UH2 Tasks

- Detailed study protocol submitted to NHLBI for formal review by Protocol Review Committee on August 13th
- Online informed consent module developed
- PHR developed for collecting PROs, medication adherence, and out-of-system CV events
- Engagement of participating physicians to determine their study design preferences & attitudes
Status of Interactive Online Informed Consent (IC) Module

- Preliminary data → Compared to traditional paper-based IC process, online module improved (p<.05) subjects’ understanding of mock study & satisfaction with IC process
- Initial PowerPoint version
 - developed and tested for usability and comprehension with 5 people with hypertension, age 50-85.
- Revisions incorporated into online module
- Testing of the active module set to begin
 - One-on-one observations (with think-aloud) and structured questionnaire
 - Two focus groups (hi and lo SES) after users work with online and paper versions
Step 3: Complete surveys every 6 months.

For the rest of the study you will complete six surveys (one every six months).
Interactive: Feedback on understanding reason for the study

What is unknown and experimental about this study?

1. Whether blood pressure medication works better at different times during the day.
2. Whether blood pressure changes at different dosage levels.
3. Whether blood pressure medications have different side effects.
4. Whether people should take more blood pressure medication at night.

Correct. We do not know for sure whether blood pressure medications work better when taken at certain times during the day.
Interactive: Feedback on understanding study procedures

You will be placed in a treatment group because it is the best treatment for you.

Incorrect. If you participate in this study, you will be randomly placed in a treatment group. We expect that whichever treatment you receive will be at least as good as your current treatment.
Status of PHR

• Elicited ideas for an engaging PHR design
 ▪ 2 groups of 10 patients, 7 90-minute sessions

• Patients wanted
 ▪ A way to measure, track and send BP info
 ▪ Feedback on information entered
 ▪ A place to enter and store personal health information
 ▪ Occasional updates on study progress/findings
 ▪ To know their information matters
 ▪ The feel of a human connection
 ▪ Study vetted by their physician

• Revised PHR web application ready for usability testing
The PHR Today
From their designs.....

…to the web application

THE UNIVERSITY OF IOWA
MD Engagement and Integration of MD Preferences into Study Design

Findings from small & large group meetings with MDs

- MDs unanimously thought study was important
- All practices preferred having central mechanism for implementing nighttime dosing and preferred pharmacist oversight
- Most MDs did not feel it was worthwhile for MDs to review eligible patients & make exclusions
- All practices emphasized minimizing practice burdens & interruptions → use of Epic BPAs as enrollment prompt met with mixed reviews
Next Steps to Prepare for UH3 Trial

1. Incorporate recommendations from NHLBI PRC (meets August 13)
2. Field test algorithms for generating patient instructions for implementing nighttime doing intervention from EMR data
3. Make final refinements to PHR and online consent module based on second round of usability testing
4. Identify definitive approach for documenting consent if required by OHRP review
5. Capitalize on UI ACO with integrated EMR to expand UI study sample base