Time to Reduce Mortality in End-Stage Renal Disease (TiME)

A Large, Pragmatic Cluster Randomized Trial in Maintenance Hemodialysis

Laura M. Dember, M.D.
on behalf of the TiME Trial Study Group

NIH HCS Research Collaboratory Grand Rounds
February 22, 2013
TiME Trial Team

Academic Investigators
- Laura Dember – U Penn
- Alfred Cheung – U Utah
- John Daugirdas – U Illinois
- Tom Greene – U Utah
- Czaba Kovesdy – U Tenn
- Dana Miskulin – Tufts
- Ravi Thadhani – MGH
- Wolfgang Winkelmayer - Stanford

Dialysis Provider Organizations
- Steven Brunelli – DaVita
- Amy Young – DaVita
- Mary Burgess - DaVita
- Eduardo Lacson, Jr – Fresenius
- Christina Kahn – Fresenius
- Leland Brown - Fresenius

Penn CRCU / CCEB
- J. Richard Landis
- Harold Feldman
- Peter Yang
- Susan Ellenberg
- Denise Cifelli
- Rosemary Madigan
- Steve Durborow
Outline

• Dialysis care in the United States
• Dialysis as a learning health system
• Rationale and design of the TiME Trial
• Efficiencies and challenges for implementing a pragmatic trial within large dialysis organizations
• Relevance of the dialysis setting to pragmatic trials in other health care delivery systems
Health Care Settings in the HCS Research Collaboratory

• Academic medical centers
• Health plans
• For-profit hospital chain
• Safety net community health centers
• Large for-profit dialysis organizations (LDOs)
Outline

• Dialysis care in the United States
 • Dialysis as a learning health system
 • Rationale and design of the TiME Trial
 • Efficiencies and challenges for implementing a pragmatic trial within large dialysis organizations
 • Relevance of the dialysis setting to pragmatic trials in other health care delivery systems
End-Stage Renal Disease in the U.S.

- 600,000 prevalent patients
 - Hemodialysis: 390,000 (65%)
 - Peritoneal dialysis: 30,000 (5%)
 - Functioning allograft: 180,000 (30%)

- 117,000 incident patients per year
 - 91% are treated with hemodialysis as initial renal replacement modality
 - 17,000 kidney transplants / year
Growth of the ESRD Program

USRDS Annual Data Report 2012
ESRD Healthcare Utilization

• Entitlement program of 1972 ensures Medicare coverage for ESRD regardless of age

• Medicare spending for ESRD patient care (total costs) is $47.5 billion / year

• ESRD costs are disproportionate: 7.5% of Medicare expenditures for 1.3% of beneficiaries

USRDS Annual Data Report 2012
Dialysis-Dependent ESRD

• Life-long dependence on dialysis unless transplanted
• High comorbidity burden and poor quality of life
• Exceedingly high mortality
 – 21% in first year
 – 50% at 3 years
Delivery of In-Center Dialysis Care

Dialysis facilities can be:
Delivery of In-Center Dialysis Care

Dialysis facilities can be:

- Free-standing or hospital-based
Delivery of In-Center Dialysis Care

Dialysis facilities can be:

- Free-standing or hospital-based
- Independent or part of dialysis organization
Delivery of In-Center Dialysis Care

Dialysis facilities can be:

– Free-standing or hospital-based

– Independent or part of an organization

– For-profit or not-for-profit
Delivery of In-Center Dialysis Care

Dialysis facilities can be:

- Free-standing or hospital-based
- Independent or part of an organization
- For-profit or not-for-profit
Delivery of In-Center Dialysis Care

Dialysis facilities can be:

- Free-standing or hospital-based
- Independent or part of an organization
- For-profit or not-for-profit
Delivery of In-Center Dialysis Care

Dialysis facilities can be:

- Free-standing or hospital-based
- Independent or part of an organization
- For-profit or not-for-profit
Dialysis Provider Organizations

• Dialysis Providers
 – Large dialysis organizations (LDOs): 4160 units
 – Small dialysis organizations: 500 units
 – Hospital-based or independent: 1600 units

• TiME Trial LDOs
 – DaVita 1850 units
 – Fresenius Medical Care 2100 units

\[\text{Total} = 280,000 \text{ pts} \]
Dialysis Facility is the Principal Source of Health Care for Many Patients with ESRD

• Patients have frequent contact with multi-disciplinary team members

• Dialysis facilities perform/provide laboratory studies, blood pressure measurements, QOL assessments, vaccinations, nutritional supplements, pharmacy services

• Burdensome for patients to go elsewhere for care

• Primary care providers often relinquish care to nephrologists and dialysis unit personnel

Outline

• Dialysis care in the United States

• **Dialysis as a learning health system**

• Rationale and design of the TiME Trial

• Efficiencies and challenges for implementing a pragmatic trial within large dialysis organizations

• Relevance of the dialysis setting to pragmatic trials in other health care delivery systems
Dialysis is Already a Learning Health System

• United States Renal Data System (USRDS)
• Dialysis Outcomes and Practice Patterns Study (DOPPS)
• Dialysis provider organization data
• Quality improvement initiatives

But very little data from randomized clinical trials!

Many Unanswered Questions in Dialysis about Fundamental Aspects of Care

• Duration of hemodialysis sessions?
• Dialysis solution potassium concentration?
• Blood pressure target?
• Phosphorus target?
• Hemoglobin target?
• Preventive health care?
• Anticoagulation for atrial fibrillation?
Many Unanswered Questions in Dialysis about Fundamental Aspects of Care

• Duration of hemodialysis sessions?
• Dialysis solution potassium concentration?
• Blood pressure target?
• Phosphorus target?
• Hemoglobin target?
• Preventive health care?
• Anticoagulation for atrial fibrillation?
Outline

• Dialysis care in the United States
• Dialysis as a learning health system
• **Rationale and design of the TiME Trial**
• Efficiencies and challenges for implementing a pragmatic trial within large dialysis organizations
• Relevance of the dialysis setting to pragmatic trials in other health care delivery systems
Outline

• Dialysis care in the United States
• Dialysis as a learning health system
• **Rationale and design of the TiME Trial**
• Efficiencies and challenges for implementing a pragmatic trial within large dialysis organizations
• Relevance of the dialysis setting to pragmatic trials in other health care delivery systems
Determination of “Adequate” Hemodialysis

• Focus has been on clearance of small solutes (urea)
• Session duration decreased markedly with the development about 20 years ago of more efficient dialyzers that provide “adequate” urea clearance in 3-4 hours rather than 5-6 hours.
• But small solute clearance is not the full story
 – Fluid removal
 – Hemodynamic stability
 – Removal of sequestered solutes
Observational Studies of Time

<table>
<thead>
<tr>
<th>Reference</th>
<th>Source</th>
<th>Longer Treatment Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tentori et al NDT 2012</td>
<td>DOPPS</td>
<td>Lower mortality</td>
</tr>
<tr>
<td>Flythe et al Kidney Int 2012</td>
<td>Fresenius Medical Care</td>
<td>Lower mortality</td>
</tr>
<tr>
<td>Ramirez et al CJASN 2012</td>
<td>CMS ESRD CPM Project</td>
<td>Higher mortality (not statistically significant)</td>
</tr>
<tr>
<td>Brunelli et al Kidney Int 2010</td>
<td>Fresenius Medical Care</td>
<td>Lower mortality</td>
</tr>
<tr>
<td>Saran et al Kidney Int 2006</td>
<td>DOPPS</td>
<td>Lower mortality</td>
</tr>
</tbody>
</table>
TiME Trial Hypothesis

Thrice weekly hemodialysis with session durations of at least 4.25 hours improves outcomes compared with usual care.
TiME Trial Design

• Cluster Randomization by dialysis facility

• Intervention
 Facility adopts approach of recommending minimum dialysis session duration of 4.25 hours for patients new to dialysis

• Usual Care
 No trial-driven facility approach for dialysis session length

• Patient Eligibility
 All patients initiating treatment with maintenance hemodialysis at participating facilities

• Outcomes:
 Mortality, hospitalization rate, HRQOL
Primary Treatment Analysis Population

• Comprised of subset for which separation in session duration between treatment groups is likely
 – Exclude large patients (V >42.5L)

• Expect 63% of participants to be in primary treatment analysis population
Sample Size

• 402 facilities, 6437 patients (4023 primary analysis population)

• Average cluster size: 16 (10 in primary analysis population)

• Power 80% for HR 0.85

• Assumptions
 – Mortality rate 18% per year
 – Intra-class correlation 0.03
 – 5% loss to f/u per year
Data Acquisition

• Clinical and administrative data are transmitted electronically from individual facilities and centralized laboratory to LDO data warehouses

• De-identified data elements are transmitted from LDO data warehouses to Penn DCC
Pragmatic Features

• All patients starting dialysis are eligible
• Intervention is delivered by clinical providers
• Outcomes:
 – ascertained from routine clinical data
 – derived from data elements common to all sites
• Adherence to intervention at the patient level will be promoted using systems already in use
• Highly centralized implementation approach
• Testing effectiveness rather than efficacy
Outline

• Dialysis care in the United States
• Dialysis as a learning health system
• Rationale and design of the TiME Trial
• **Efficiencies and challenges for implementing a pragmatic trial within large dialysis organizations**
• Relevance of the dialysis setting to pragmatic trials in other health care delivery systems
Dialysis Environment for Pragmatic Trials

• Dialysis organizations have the features of large, highly structured businesses
Dialysis Environment for Pragmatic Trials

• Dialysis organizations have the features of large, highly structured businesses
 – Multiple administrative levels, regional divisions, and governance levels
 – Operate under business rules and conventions
 – Operate in a highly regulated environment which necessitates a level of uniformity and rigidity
Dialysis Environment for Pragmatic Trials

• But at the dialysis facility level there is always some degree of variability in practices and conventions
 – Small team of care providers
 – Local culture and “neighborhood flavor”
Dialysis Environment for Pragmatic Trials

- But at the dialysis facility level there is always some degree of variability in practices and conventions
 - Small team of care providers
 - Local culture and “neighborhood flavor”

We are accommodating and leveraging aspects of both the centralized business structure and the local operations
Example: Facility Selection

Facility Eligibility

1. Willingness to adopt minimum session duration approach
2. Current median treatment time ≤ 3.5 hours
3. Capacity to increase times (14 – 18 patients)

Both centralized systems and local activities will be used to determine facility eligibility.
Example: Facility Selection

• Central level:
 – Screen for facilities with treatment time ≤ 3.5 hours
 – Use centrally-developed tools for determining operational capacity for increased time

• Local level:
 – Supplement centralized assessment of operational capacity with local determination
 – Willingness to participate is a local decision and implementing the intervention requires formal approval by facility’s governing body
Example: Adherence to Intervention

• Central level:
 – Use provider organization’s electronic system to “label” patients as trial participants
 – Use centralized data systems for monitoring prescribed and delivered treatment times by participating facilities

• Local level:
 – Use direct communication and trouble shooting with individual facilities
Outline

• Dialysis care in the United States
• Dialysis as a learning health system
• Rationale and design of the TiME Trial
• Efficiencies and challenges for implementing a pragmatic trial within large dialysis organizations

• Relevance of the dialysis setting to pragmatic trials conducted in other health care delivery systems
Relevance of Dialysis Setting to Other Health Care Settings for Pragmatic Trials

• Model for trials involving:
 – Patients with large burden of illness and complex disorders
 – Interventions implemented at the health care delivery site
 – Large number of centers, broad geographic distribution
 – Research alliances between academic institutions and business organizations
Relevance of Dialysis Setting to Other Health Care Settings for Pragmatic Trials

• Other “chains”
 – Nursing homes
 – Rehabilitation facilities
 – Chemotherapy centers
 – Free-standing surgical centers
 – Pharmacies
 – IVF centers