The NIH Collaboratory
Distributed Research Network

Jeff Brown, Lesley Curtis, Richard Platt, Beth Syat
Harvard Pilgrim Health Care Inst / Harvard Medical School
Duke Clinical Research Institute
April 20, 2015
The Goal

The NIH Collaboratory DRN facilitates research partnerships with organizations (Data Partners) that possess electronic health data that have been quality checked and formatted to support multi-site biomedical research.
Uses of the Distributed Network

• Provide information to support research planning
 • Background rates
 • Assess assumptions about relevant populations
 • Prioritize research domains

• Answer specific research questions

• Identify sites for participation in prospective interventional or observational studies
Currently Available Data

• Research ready data sets representing >90% of the FDA Sentinel program

• > 300 million person-years of observation time and detailed information for billions of medical encounters and outpatient pharmacy dispensings
Unique Individuals by Age Range

- 0-1 Yrs: 1.0%
- 2-4 Yrs: 2.5%
- 5-9 Yrs: 5.3%
- 10-14 Yrs: 5.7%
- 15-18 Yrs: 4.8%
- 19-21 Yrs: 4.0%
- 22-44 Yrs: 35.4%
- 45-64 Yrs: 26.6%
- 65-74 Yrs: 7.9%
- 75+ Yrs: 6.7%
- Missing: 0.0%
Data Elements

• Captured
 • Ambulatory care diagnoses and procedures
 • Outpatient pharmacy dispensing
 • Laboratory testing and selected test results
 • Inpatient diagnoses, treatments and procedures itemized in hospital bill

• Not captured
 • Out of hospital death
 • Over-the-counter medication
 • Community-based immunizations
Some data partners do not create every table (e.g., vital signs are available for only a subset of individuals)
The Easy – Hard Continuum of Questions

- **Easy:** Can be answered with existing programs
 - Counts, exposure-outcome relationships, confounder adjusted comparative cohort analyses
- **Moderate:** Can be answered with new programming
 - Data exists, is well characterized, and known to be reliable
- **Hard:** Requires investigation or mapping of existing data
 - Data exists but completeness and quality must be determined
- **Harder:** New data is needed
 - Birth registry, death registry, etc
- **Impossible:** The data isn’t reliably captured
 - Race, smoking status, over the counter medication use
We will help figure out where your question falls on the continuum

- The DRN Coordinating Center helps NIH requesters or their designees understand and use the network
- We assess fit between requests and the DRN’s capabilities
- We suggest ways to maximize usefulness of the DRN data resources
- We facilitate engagement with data partners
- **Requesters do not have to be experts in observational research or use of health care data to initiate a request**
Easy Example: Simple Counts

• **Condition:** Progressive Multifocal Leukoencephalopathy (PML)

• **Analysis:**

 • Count of patients and prevalence rate of PML identified in inpatient setting

 • Counts provided per patient per year, age group, and sex
Result: In 2012, there were 87 individuals

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Males</th>
<th>Prevalence per 10,000</th>
<th>Females</th>
<th>Prevalence per 10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-21</td>
<td>1</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22-44</td>
<td>16</td>
<td>0.14</td>
<td>8</td>
<td>0.07</td>
</tr>
<tr>
<td>45-64</td>
<td>29</td>
<td>0.31</td>
<td>18</td>
<td>0.18</td>
</tr>
<tr>
<td>65+</td>
<td>6</td>
<td>0.16</td>
<td>9</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Easy Example:
Cohort Identification and Descriptive Analysis

• Query goals
 • Patients continuously exposed to \textit{bisphosphonates} for >3 years
 • Assess the risk of hip and other fractures

• Analysis
 • Period: 2006-2013
 • Population: health plan members who had both medical and pharmacy coverage
 • Identify \textit{new} users of alendronate, risedronate, & ibandronate
 • Create treatment episodes based on repeated exposures
 • Identify fractures during or shortly after treatment
 • Sensitivity analyses examined different exposure, event, and episode definitions (n=78 analyses)
Easy Example:
Cohort Identification and Descriptive Analysis (cont’d)

Results

• ~34,000 new users
• ~22,000 current alendronate users exposed for 3 - 5 years
• ~9,000 people enter this cohort each year

<table>
<thead>
<tr>
<th>Fracture type</th>
<th>Exposed people</th>
<th>Person time (yrs)</th>
<th>Fractures</th>
<th>Rate/ 10K yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip</td>
<td>34,428</td>
<td>138,386</td>
<td>725</td>
<td>52</td>
</tr>
<tr>
<td>Femoral fractures of interest</td>
<td>34,672</td>
<td>140,020</td>
<td>339</td>
<td>24</td>
</tr>
</tbody>
</table>

* New users of alendronate, continuously exposed for at least 3 years
Easy Example: Propensity score matched comparison

• Query goals
 • What is the comparative risk of angioedema among new users of ACE inhibitors vs new users of beta-blockers?

• Analysis
 • Propensity score matched survival analysis
 • Performed via reusable modular program requiring only specification of input parameters
Easy Example: Propensity score matched comparison (cont’d)

Input parameters
- Population (age/sex/etc.), study period
- Exposures
- Outcomes
 - ICD-9-CM code 995.1 in any position during outpatient, inpatient, or emergency department encounter
 - Washout period (days before first dispensing): 183 days
- Inclusion criteria
- Exclusion criteria
- Covariates
- Propensity score matching options
 - Comorbidity, utilization, high dimensional propensity score
 - Matching ratio
 - Caliper size
Angioedema: Table 1. Unmatched Cohort

3.9 million new users

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>ACE Inhibitors</th>
<th>Beta Blockers</th>
<th>Absolute Difference</th>
<th>Standardized Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>2,211,215</td>
<td>1,673,682</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Events while on therapy</td>
<td>5,158</td>
<td>1,292</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Person-time at risk (days)</td>
<td>186.9</td>
<td>266.6</td>
<td>31.7</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>ACE Inhibitors</th>
<th>Beta Blockers</th>
<th>Absolute Difference</th>
<th>Standardized Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (F)</td>
<td>997,682</td>
<td>946,344</td>
<td>-11.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>Mean age (std dev)</td>
<td>54.6</td>
<td>53.7</td>
<td>0.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Recorded History of:

<table>
<thead>
<tr>
<th>Event</th>
<th>ACE Inhibitors</th>
<th>Beta Blockers</th>
<th>Absolute Difference</th>
<th>Standardized Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic reactions</td>
<td>207,944</td>
<td>190,387</td>
<td>-7.6</td>
<td>-0.1</td>
</tr>
<tr>
<td>Diabetes</td>
<td>471,661</td>
<td>173,083</td>
<td>10.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Heart failure</td>
<td>41,060</td>
<td>74,897</td>
<td>4.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>109,948</td>
<td>224,881</td>
<td>13.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Health Service Utilization Intensity:

<table>
<thead>
<tr>
<th>Event</th>
<th>ACE Inhibitors</th>
<th>Beta Blockers</th>
<th>Absolute Difference</th>
<th>Standardized Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of medications</td>
<td>5.4</td>
<td>5.5</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>Number of filled prescriptions</td>
<td>7.5</td>
<td>9.6</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>Number of inpatient hospital encounters (IP)</td>
<td>0.1</td>
<td>0.4</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td>Number of emergency room encounters (ED)</td>
<td>0.2</td>
<td>0.7</td>
<td>-0.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>Number of ambulatory encounters (AV)</td>
<td>4.8</td>
<td>6.3</td>
<td>-1.5</td>
<td>-0.3</td>
</tr>
<tr>
<td>Number of other ambulatory encounters (OA)</td>
<td>3.1</td>
<td>2.6</td>
<td>-0.5</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

- **Diabetes**: 21% vs 10%
- **Heart failure**: 2% vs 4%
- **Ischemic heart disease**: 5% vs 13%

Propensity Scores Before Match

Histograms of PS distribution by DP (masked)
Histogram of Predefined PS, Unmatched Cohort C-Stat for Predefined: 0.695

Angioedema: Table 2. Matched Cohort

Table 2. Cohort of New Initiators of ACE Inhibitors and Beta Blockers (Matched Predefined PS, Caliper = .025)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>ACE Inhibitors</th>
<th>Beta Blockers</th>
<th>Absolute Difference</th>
<th>Standardized Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>1,309,104</td>
<td>1,309,104</td>
<td>0.0</td>
<td>-0.4</td>
</tr>
<tr>
<td>Events while on therapy</td>
<td>3,911</td>
<td>988</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Person-time at risk (days)</td>
<td>183.6</td>
<td>131.8</td>
<td>31.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Patient Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (F)</td>
<td>723,955</td>
<td>689,617</td>
<td>2.6</td>
<td>0.1</td>
</tr>
<tr>
<td>Mean age (std dev)</td>
<td>54.1</td>
<td>54.4</td>
<td>-0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Recorded History of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergic reactions</td>
<td>157,920</td>
<td>154,953</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>150,056</td>
<td>150,551</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Heart failure</td>
<td>35,302</td>
<td>38,966</td>
<td>-0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Ischemic heart diseases</td>
<td>102,200</td>
<td>106,785</td>
<td>-0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>NSAID use</td>
<td>191,758</td>
<td>189,612</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Health Service Utilization Intensity</td>
<td>Mean</td>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of generics</td>
<td>3.7</td>
<td>3.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Number of filled prescriptions</td>
<td>8.1</td>
<td>10.2</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Number of inpatient hospital encounters (IP)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Number of non-acute institutional encounters (IS)</td>
<td>0.1</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Number of emergency room encounters (ED)</td>
<td>0.33</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Number of ambulatory encounters (AV)</td>
<td>5.6</td>
<td>7.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Number of other ambulatory encounters (OA)</td>
<td>1.2</td>
<td>2.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

2.6 million new users

- Diabetes: 10% vs 10%
- Heart failure: 3% vs 3%
- Ischemic heart disease: 8% vs 8%

Propensity Scores After Match

Histogram of PS distribution by DP (masked)

Histogram of Predefined PS among Predefined PS Matched Cohort, Matched Cal = .025 C-Stat for Predefined: 0.695
Angioedema: Table 3. Results

ACEI vs β-blocker 1:1 matched analysis:

- **HR = 3.1**
 (95% CI, 2.9-3.4)

Table 3: Sequential Estimates for Angioedema Events by Analysis Type, and Drug Pair

<table>
<thead>
<tr>
<th>Exposure Definition</th>
<th>Monitoring Period</th>
<th>New Users</th>
<th>Person Years at Risk</th>
<th>Average Person Years at Risk</th>
<th>Number of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmatched Analysis (Site-adjusted only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta Blockers</td>
<td>1,673,682</td>
<td>683,614</td>
<td>0.41</td>
<td>1,292</td>
<td></td>
</tr>
<tr>
<td>Beta Blockers</td>
<td>1,309,104</td>
<td>544,285</td>
<td>0.42</td>
<td>988</td>
<td></td>
</tr>
</tbody>
</table>

1:1 Matched Analysis; Caliper=0.025

<table>
<thead>
<tr>
<th>Incidence Rate per 1000 Person Years</th>
<th>Difference per 1000 Person Years</th>
<th>Difference in Risk per 1000 New Users</th>
<th>Hazard Ratio (95% CI)</th>
<th>Wald P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.558</td>
<td>2.33</td>
<td>2.67</td>
<td>1.56</td>
<td>2.55 (2.40, 2.71)</td>
</tr>
<tr>
<td>1.890</td>
<td>0.77</td>
<td>1.56</td>
<td>0.41</td>
<td>6.34 (2.86, 3.44)</td>
</tr>
</tbody>
</table>

Example Request Assessment
Trial to Assess Chelation Therapy (TACT) Replication

• Plan to replicate the TACT trial – EDTA chelation to prevent coronary heart disease – focusing on diabetic patients

• Inclusion criteria
 • > 50 years old
 • Confirmed diagnosis of diabetes on medical therapy (insulin or oral)
 • Previous myocardial infarction

EASY: All inclusion criteria are available for querying using existing cohort identification programs
Example Request Assessment
Trial to Assess Chelation Therapy (TACT) Replication

Exclusion criteria

• Creatinine > 2.0 mg/dl
 • EASY: Available for a subset; >7million results available

• Cigarette smoking within 3 months
 • IMPOSSIBLE: Smoking status not recorded in claims and unreliable in EHRs

• Heart failure or heart failure hospitalization
 • EASY: Available

• No chelation therapy in prior 5 years
 • Probably EASY: Need to assess data capture reliability and payment policies
Example Request Assessment
Trial to Assess Chelation Therapy (TACT) Replication

• Question: What are the demographic characteristics of patients that might be eligible – race, gender, age? What about comorbidities?

 • **EASY:** Age, sex, and comorbidities can be defined and presented

 • **IMPOSSIBLE:** Race is recorded for a subset of patients
Example Request Assessment
Trial to Assess Chelation Therapy (TACT) Replication

• Question: What can you tell us about where patients who meet these criteria receive most of their care – primary care offices, cardiology offices, endocrinology clinics? Does this vary in urban, suburban, more rural communities?

• **HARD**: Facility and provider codes are available; new programming and discussion with data partners would be required
Example Request Assessment
Trial to Assess Chelation Therapy (TACT) Replication

• What can you tell us about the uncertainties in these estimates?
 • Suggest using sensitivity analyses to assess importance of each definition
Example Request Assessment
Follow Up of Abnormal Cancer Screening Tests

Request: Characterize rate of follow-up of abnormal cancer screening tests, including mammography, fecal immunochemical (FIT), or Pap tests within a managed care population
Example Request Assessment
Follow Up of Abnormal Cancer Screening Tests

• Identification of benefit design – to define “managed care” – is possible but complex
 • Assessment of complexity and validity over time is needed
 • Definition of “managed care”
Example Request Assessment
Follow Up of Abnormal Cancer Screening Tests

1. How many are screened for each cancer?
2. How many have abnormal screening test results?
3. How many abnormal results appear to have no further testing?
 a. For mammography – no additional mammography, ultrasound, MRI or biopsy with 90 days
 b. For FIT – no colonoscopy within 90 days
 c. For PAP – no repeat PAP that is normal, or no colposcopy within 90 days
4. Is there other evidence of evaluation of the abnormality?

EASY: Questions 1-4 can be answered using existing data and programs
Example Request Assessment
Follow Up of Abnormal Cancer Screening Tests

5. Does the rate of follow up of abnormal test results vary across practices?

HARD: Facility and provider codes are available; new programming and discussion with data partners would be required

What are the race and age breakdowns of patients?

- **EASY:** Age distribution
- **IMPOSSIBLE:** Race
How to Use the NIH Collaboratory Distributed Research Network

• Data Partners participate on a project-by-project-basis

• Submit requests using the NIH Collaboratory DRN request form

• The DRN Coordinating Center will review each request to assess appropriateness for the data resource and level of effort required to address the question

• Costs apply – Existing funding can support a limited number of questions
Thank you!