

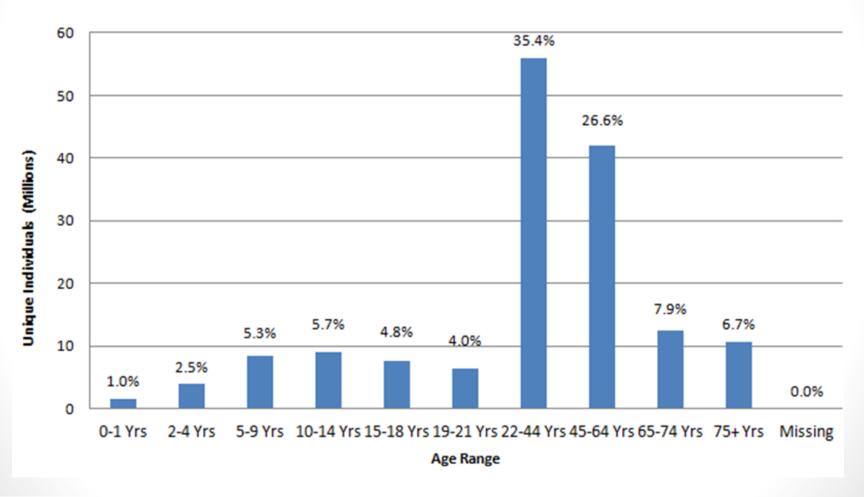
Health Care Systems Research Collaboratory

# The NIH Collaboratory Distributed Research Network

Jeff Brown, Lesley Curtis, Richard Platt, Beth Syat
Harvard Pilgrim Health Care Inst / Harvard Medical School
Duke Clinical Research Institute
April 20, 2015

### The Goal

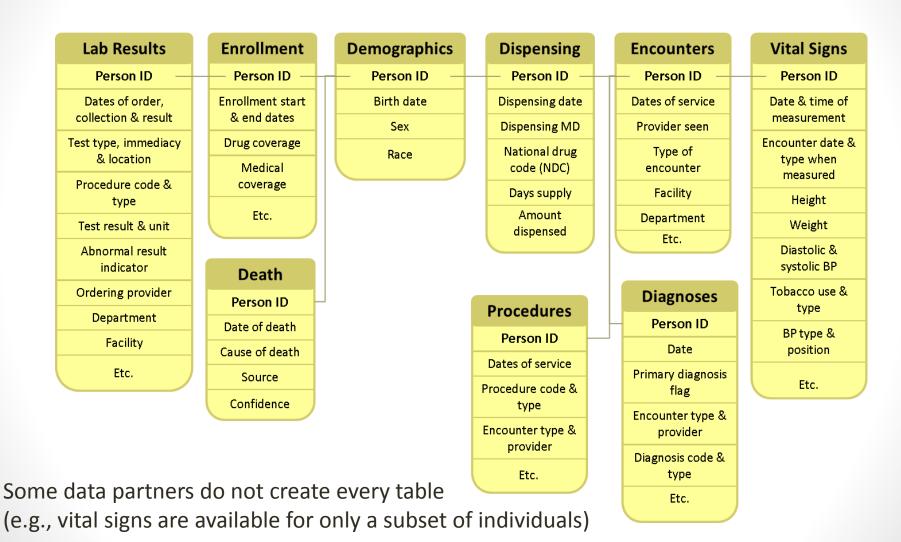
The NIH Collaboratory DRN facilitates research partnerships with organizations (Data Partners) that possess <u>electronic</u> <u>health data that have been quality checked and formatted</u> to support multi-site biomedical research


### Uses of the Distributed Network

- Provide information to support research planning
  - Background rates
  - Assess assumptions about relevant populations
  - Prioritize research domains
- Answer specific research questions
- Identify sites for participation in prospective interventional or observational studies

## **Currently Available Data**

- Research ready data sets representing >90% of the FDA Sentinel program
- > 300 million person-years of observation time and detailed information for billions of medical encounters and outpatient pharmacy dispensings


## Unique Individuals by Age Range



### **Data Elements**

- Captured
  - Ambulatory care diagnoses and procedures
  - Outpatient pharmacy dispensing
  - Laboratory testing and selected test results
  - Inpatient diagnoses, treatments and procedures itemized in hospital bill
- Not captured
  - Out of hospital death
  - Over-the-counter medication
  - Community-based immunizations

### Data Model



## The Easy – Hard Continuum of Questions

- <u>Easy:</u> Can be answered with existing programs
  - Counts, exposure-outcome relationships, confounder adjusted comparative cohort analyses
- Moderate: Can be answered with new programming
  - Data exists, is well characterized, and known to be reliable
- Hard: Requires investigation or mapping of existing data
  - Data exists but completeness and quality must be determined
- Harder: New data is needed
  - Birth registry, death registry, etc
- Impossible: The data isn't reliably captured
  - Race, smoking status, over the counter medication use

# We will help figure out where your question falls on the continuum

- The DRN Coordinating Center helps NIH requesters or their designees understand and use the network
- We assess fit between requests and the DRN's capabilities
- We suggest ways to maximize usefulness of the DRN data resources
- We facilitate engagement with data partners
- Requesters do not have to be experts in observational research or use of health care data to initiate a request

## Easy Example: Simple Counts

 Condition: Progressive Multifocal Leukoencephalopathy (PML)

#### Analysis:

- Count of patients and prevalence rate of PML identified in inpatient setting
- Counts provided per patient per year, age group, and sex

## Easy Example: Simple Counts (cont'd)

**Result:** In 2012, there were 87 individuals

## Prevalence of Progressive Multifocal Leukoencephalopathy in 2012

| Age<br>(years) | Males | Prevalence<br>per 10,000 | Females | Prevalence per<br>10,000 |
|----------------|-------|--------------------------|---------|--------------------------|
| 0-21           | 1     | 0.01                     | 0       | 0                        |
| 22-44          | 16    | 0.14                     | 8       | 0.07                     |
| 45-64          | 29    | 0.31                     | 18      | 0.18                     |
| 65+            | 6     | 0.16                     | 9       | 0.20                     |

### Easy Example: Cohort Identification and Descriptive Analysis

### Query goals

- Patients continuously exposed to bisphosphonates for <u>></u>3 years
- Assess the risk of hip and other fractures

### Analysis

- Period: 2006-2013
- Population: health plan members who had both medical and pharmacy coverage
- Identify **new** users of alendronate, risedronate, & ibandronate
- Create treatment episodes based on repeated exposures
- Identify fractures during or shortly after treatment
- Sensitivity analyses examined different exposure, event, and episode definitions (n=78 analyses)

## Easy Example:

### Cohort Identification and Descriptive Analysis (cont'd)

#### Results

- ~34,000 new users
- ~22,000 <u>current</u> alendronate users exposed for 3 5 years
- ~9,000 people enter this cohort each year

#### Fractures in long term alendronate users\*

| Fracture type                 | Exposed people | Person<br>time (yrs) | Fractures | Rate/ 10K yrs |
|-------------------------------|----------------|----------------------|-----------|---------------|
| Нір                           | 34,428         | 138,386              | 725       | 52            |
| Femoral fractures of interest | 34,672         | 140,020              | 339       | 24            |

<sup>\*</sup> New users of alendronate, continuously exposed for at least 3 years

## Easy Example: Propensity score matched comparison

- Query goals
  - What is the comparative risk of angioedema among new users of ACE inhibitors vs new users of beta-blockers?
- Analysis
  - Propensity score matched survival analysis
  - Performed via reusable modular program requiring only specification of input parameters

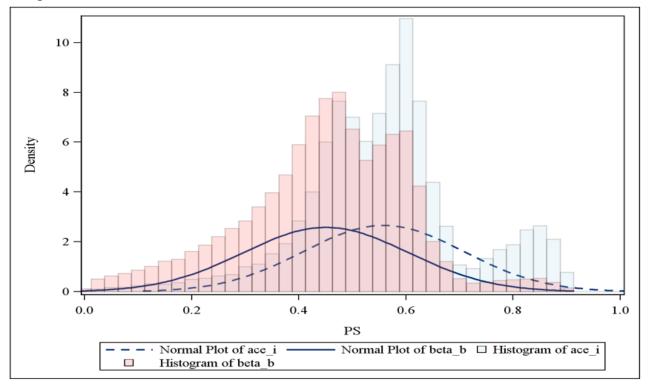
### Easy Example:

## Propensity score matched comparison (cont'd)

#### Input parameters

- Population (age/sex/etc.), study period
- **Exposures**
- Outcomes
  - ICD-9-CM code 995.1 in any position during outpatient, inpatient, or emergency department encounter
  - Washout period (days before first dispensing): 183 days
- Inclusion criteria
- Exclusion criteria
- Covariates
- Propensity score matching options
  - Comorbidity, utilization, high dimensional propensity score
  - Matching ratio
  - Caliper size

## Angioedema: Table 1. Unmatched Cohort


|                                   |           | Drimon   | Analysis            |             | Coveria                | te Balance                 |
|-----------------------------------|-----------|----------|---------------------|-------------|------------------------|----------------------------|
| etorietia                         | ACE Int   | nibitors | Analysis<br>Beta Bi | lockers     | Covaria                | te balance                 |
| 3.9 million new use               |           | %        | N Deta b            | %           | Absolute<br>Difference | Standardized<br>Difference |
| Patients                          | 2,211,215 | 100%     | 1,673,682           | 100%        | 0.0                    | -                          |
| Events while on therapy           | 5.158     | 0.2%     | 1,292               | 0.1%        | 0.1                    | 0.0                        |
| Person-time at risk (days)        | 186.9     | 266.6    | 149.2               | 235.1       | 37.7                   | 0.2                        |
| nt Characteristics                |           |          |                     |             |                        |                            |
| Gender (F)                        | 997,962   | 45.10%   | 946,344             | 56.50%      | -11.4                  | -0.2                       |
| Mean age (std dev)                | 54.6      | 12.7     | 53.7                | 15.6        | 0.9                    | 0.1                        |
| rded History of:                  |           |          |                     |             |                        |                            |
| Allergic reactions                | 207,344   | 9.4%     | 190,387             | 11.4%       | -2.0                   | -0.1                       |
| Diabetes                          | 471,661   | 21.3%    | 173,083             | 10.3%       | 11.0                   | 0.3                        |
| Heart failure                     | 41,060    | 1.9%     | 74,897              | 4.5%        | -2.6                   | -0.1                       |
| Ischemic heart diseases           | 109,948   | 5.0%     | 224,681             | 13.4%       | -8.4                   | -0.3                       |
| NSAID use                         | 318,298   | 1%       | 250,697             | 15.0%       | -0.6                   | 0.0                        |
| th Service Utilization Intensity: | Mean      | Std L    | Dial                | betes       |                        | <b>21</b> % vs 1           |
| Number of generics                | 3.4       | 3.5      | Dia                 | Detes       |                        | ZI/0 V3 1                  |
| Number of filled prescriptions    | 7.5       | 9.6      | Hea                 | rt failu    | re                     | 2% vs                      |
| Number of inpatient hospital      |           |          | 1100                | ii c iaiiai | C                      | Z/0 V3                     |
| encounters (IP)                   | 0.1       | 0.4      | Isch                | emic he     | eart disea             | se 5% vs                   |
| Number of non-acute               |           |          | .50                 |             | cart alsea             | 36 370 13                  |
| institutional encounters (IS)     | 0.0       | 0.6      | 0.1                 | 0.9         | -0.1                   | -0.1                       |
| Number of emergency room          |           |          |                     |             |                        |                            |
| encounters (ED)                   | 0.2       | 0.7      | 0.4                 | 1.0         | -0.2                   | -0.2                       |
| Number of ambulatory              | 0.2       | 0        | •                   | 2.0         | 0.2                    | 0.2                        |
| encounters (AV)                   | 4.8       | 6.3      | 6.9                 | 8.4         | -2.1                   | -0.3                       |
| Number of other ambulatory        | 4.0       | 0.5      | 0.5                 | 0.4         | -2.1                   | -0.5                       |
| encounters (OA)                   | 1.1       | 2.6      | 1.5                 | 3.6         | -0.4                   | -0.1                       |

www.mini-sentinel.org/work\_products/Statistical\_Methods/Mini-Sentinel\_Methods\_Known-Positives-ACEI-Angioedema.pdf

## **Propensity Scores Before Match**

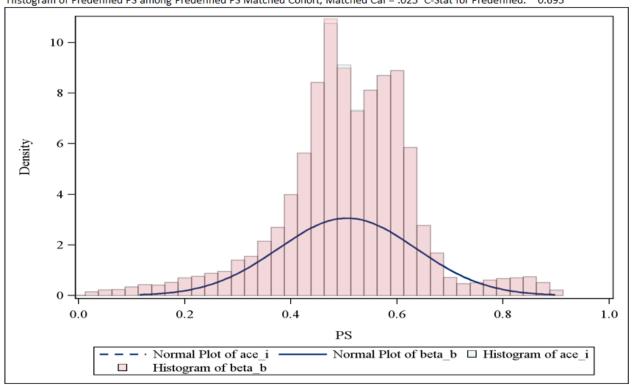
#### Histograms of PS distribution by DP (masked)

Histogram of Predefined PS, Unmatched Cohort C-Stat for Predefined: 0.695



w\text{wm.mini-sentinel.org/work\_products/Statistical\_Methods/Mini-Sentinel\_Methods\_Known-Positives-ACEI-Angioedema.pdf

## Angioedema: Table 2. Matched Cohort


|                                   |           | Primary | Analysis  |           | Covaria                | ite Balance                |     |
|-----------------------------------|-----------|---------|-----------|-----------|------------------------|----------------------------|-----|
|                                   | ACE Inh   | ibitors | Beta Bl   | ockers    |                        |                            |     |
| 2.6 million new users             | N         | %       | N         | %         | Absolute<br>Difference | Standardized<br>Difference |     |
| Patients                          | 1,309,104 | 59.2%   | 1,309,104 | 78.2%     | 0.0                    | -0.4                       | _   |
| Events while on therapy           | 3,311     | 0.3%    | 988       | 0.1%      | 0.2                    | 0.0                        |     |
| Person-time at risk (days)        | 183.8     | 263.7   | 151.8     | 238.9     | 31.9                   | 0.1                        |     |
| nt Characteristics                |           |         |           |           |                        |                            |     |
| Gender (F)                        | 723,955   | 55.3%   | 689,617   | 52.7%     | 2.6                    | 0.1                        |     |
| Mean age (std dev)                | 54.1      | 13.1    | 54.4      | 14.9      | -0.3                   | 0.0                        |     |
| rded History of:                  |           |         |           |           |                        |                            |     |
| Allergic reactions                | 137,920   | 10.5%   | 134,933   | 10.3%     | 0.2                    | 0.0                        |     |
| Diabetes                          | 150,036   | 11.5%   | 150,551   | 11.5%     | 0.0                    | 0.0                        |     |
| Heart failure                     | 35,302    | 2.7%    | 38,966    | 3.0%      | -0.3                   | 0.0                        |     |
| Ischemic heart diseases           | 102,200   | 7.8%    | 106,786   | 8.2%      | -0.4                   | 0.0                        |     |
| NSAID use                         | 191,798   | 7%      | 189,612   | 14.5%     | 0.2                    | 0.0                        |     |
| th Service Utilization Intensity: | Mean      | Sta     | Diab      | otos      |                        | 10% vs 1                   | 100 |
| Number of generics                | 3.7       | 3.7%    | Diab      | eles      |                        | TO 10 A2 1                 | LU  |
| Number of filled prescriptions    | 8.1       | 10.2%   | Hear      | rt failur | е                      | 3% vs                      | 3   |
| Number of inpatient hospital      |           |         |           |           | •                      |                            | _   |
| encounters (IP)                   | 0.1       | 0.5%    | Ische     | emic he   | art diseas             | se 8% vs                   | 8   |
| Number of non-acute               |           |         |           |           |                        |                            |     |
| institutional encounters (IS)     | 0.1       | 0.7%    | 0.1       | 0.7%      | 0.0                    | 0.0                        |     |
| Number of emergency room          |           |         |           |           |                        |                            |     |
| encounters (ED)                   | 0.3       | 0.8%    | 0.3       | 0.8%      | 0.0                    | 0.0                        |     |
| Number of ambulatory              |           |         |           |           |                        |                            |     |
| encounters (AV)                   | 5.6       | 7.3%    | 5.6       | 6.6%      | 0.0                    | 0.0                        |     |
| Number of other ambulatory        |           |         |           |           |                        |                            |     |
| encounters (OA)                   | 1.2       | 2.9%    | 1.3       | 3.0%      | 0.0                    | 0.0                        |     |

 $www.mini-sentinel.org/work\_products/Statistical\_Methods/Mini-Sentinel\_Methods\_Known-Positives-ACEI-Angioedema.pdf$ 

## **Propensity Scores After Match**

#### Histograms of PS distribution by DP (masked)

Histogram of Predefined PS among Predefined PS Matched Cohort, Matched Cal = .025 C-Stat for Predefined: 0.695



w\text{wm.mini-sentinel.org/work\_products/Statistical\_Methods/Mini-Sentinel\_Methods\_Known-Positives-ACEI-Angioedema.pdf

## Angioedema: Table 3. Results

ACEI vs β-blocker 1:1 matched analysis:

• HR = 3.1 (95% CI, 2.9-3.4)

| Table 3: Sequential Estimates for Angioedema Events by Analysis Type, and Drug Pair |                  |            |              |              |           |  |  |
|-------------------------------------------------------------------------------------|------------------|------------|--------------|--------------|-----------|--|--|
|                                                                                     |                  |            |              | Average      |           |  |  |
| Exposure                                                                            | Monitoring       |            | Person Years | Person Years | Number of |  |  |
| Definition                                                                          | Period           | New Users  | at Risk      | at Risk      | Events    |  |  |
| Unmatched Analy                                                                     | ysis (Site-adjus | ited only) |              |              |           |  |  |
| ACE Inhibitors                                                                      | 1                | 2,211,215  | 1,131,526    | 0.51         | 5,158     |  |  |
| Beta Blockers                                                                       | _                | 1,673,682  | 683,614      | 0.41         | 1,292     |  |  |
| 1:1 Matched Analysis; Caliper=0.025                                                 |                  |            |              |              |           |  |  |
| ACE Inhibitors                                                                      | 1                | 1,309,104  | 658,700      | 0.50         | 3,311     |  |  |
| Beta Blockers                                                                       | -                | 1,309,104  | 544,285      | 0.42         | 988       |  |  |

| Incidence Rate<br>per 1000 Person<br>Years | Risky<br>New Use | Difference per<br>1000 Person<br>Years | Difference in<br>Risk per 1000<br>New Users | Hazard Ratio<br>(95% CI) | Wald P-Value |
|--------------------------------------------|------------------|----------------------------------------|---------------------------------------------|--------------------------|--------------|
| 4.558<br>1.890                             | 2.33<br>0.77     | 2.67                                   | 1.56                                        | 2.55 ( 2.40, 2.71)       | <.0001       |
| 5.027                                      | 2.53             |                                        |                                             |                          | 1            |
| 1.815                                      | 0.75             | 3.21                                   | 1.77                                        | 3.14 ( 2.86, 3.44)       | <.0001       |

www.mini-sentinel.org/work\_products/Statistical\_Methods/Mini-Sentinel\_Methods\_Known-Positives-ACEI-Angioedema.pdf

 Plan to replicate the TACT trial – EDTA chelation to prevent coronary heart disease – focusing on diabetic patients

#### Inclusion criteria

- > 50 years old
- Confirmed diagnosis of diabetes on medical therapy (insulin or oral)
- Previous myocardial infarction

EASY: All inclusion criteria are available for querying using existing cohort identification programs

#### **Exclusion criteria**

- Creatinine > 2.0 mg/dl
  - <u>EASY</u>: Available for a subset; >7million results available
- Cigarette smoking within 3 months
  - IMPOSSIBLE: Smoking status not recorded in claims and unreliable in EHRs
- Heart failure or heart failure hospitalization
  - EASY: Available
- No chelation therapy in prior 5 years
  - Probably EASY: Need to assess data capture reliability and payment policies

- Question: What are the demographic characteristics of patients that might be eligible – race, gender, age? What about comorbidities?
  - <u>EASY:</u> Age, sex, and comorbidities can be defined and presented
  - IMPOSSIBLE: Race is recorded for a subset of patients

- Question: What can you tell us about where patients who meet these criteria receive most of their care – primary care offices, cardiology offices, endocrinology clinics?
   Does this vary in urban, suburban, more rural communities?
  - HARD: Facility and provider codes are available; new programming and discussion with data partners would be required

- What can you tell us about the uncertainties in these estimates?
  - Suggest using sensitivity analyses to assess importance of each definition

Request: Characterize rate of follow-up of abnormal cancer screening tests, including mammography, fecal immunochemical (FIT), or Pap tests within a managed care population

- Identification of benefit design to define "managed care" – is possible but complex
  - Assessment of complexity and validity over time is needed
  - Definition of "managed care"

- 1. How many are screened for each cancer?
- 2. How many have abnormal screening test results?
- 3. How many abnormal results appear to have no further testing?
  - a. For mammography no additional mammography, ultrasound, MRI or biopsy with 90 days
  - b. For FIT no colonoscopy within 90 days
  - c. For PAP no repeat PAP that is normal, or no colposcopy within 90 days
- 4. Is there other evidence of evaluation of the abnormality?

EASY: Questions 1-4 can be answered using existing data and programs

5. Does the rate of follow up of abnormal test results vary across practices?

HARD: Facility and provider codes are available; new programming and discussion with data partners would be required

What are the race and age breakdowns of patients?

- EASY: Age distribution
- IMPOSSIBLE: Race

## How to Use the NIH Collaboratory Distributed Research Network

- Data Partners participate on a project-by-project-basis
- Submit requests using the <u>NIH Collaboratory DRN request form</u>
- The DRN Coordinating Center will review each request to assess appropriateness for the data resource and level of effort required to address the question
- Costs apply Existing funding can support a limited number of questions

Thank you!