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Challenge in CRTs: a limited number of clusters
Logistical or resource constraints
Systematic reviews

Fiero et al. (2016): from 86 CRTs published between 08/2013 and
07/2014, median number of clusters randomized was 24
Ivers et al. (2011): from 285 CRTs published between 2000 and 2008,
median number of clusters randomized was 21

Tend to inflate type I error rates for < 30 clusters (Murray et al.,
2008)

Introduction 

Cluster randomized trials (CRTs) 
Unit of randomization: a cluster of individuals 
Commonly used in public health, education, and social policy 
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Limitation: ROB has negative finite-sample biases for < 30 clusters
Bias-corrected sandwich variance estimators

Kauermann and Carroll (2001) (abbreviated as KC)
Mancl and DeRouen (2001) (abbreviated as MD)
Fay and Graubard (2001) (abbreviated as FG)
Morel et al. (2003) (abbreviated as MBN)

Introduction 

Generalized estimating equations (GEE) by Liang and Zeger (1986) 
Account for within-cluster correlations 
Population-averaged interpretation (Preisser et al., 2003)
Robust sandwich variance estimator (ROB)

asymptotically valid inference
even when the correlation structure is not correctly specified 
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Limited evaluations for censored time-to-event outcomes
Caille et al. (2021): from 186 CRTs from 2013 to 2018,
time-to-event outcomes are not uncommon but appropriate
statistical methods are infrequently used
Fay and Graubard (2001): the only study with a simulation evaluation

Introduction 

Bias-corrected sandwich variance estimators 
Application to small CRTs
Literature on comparing their finite-sample performances

in maintaining valid type I error rates
with a continuous, binary or count outcome 
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Our work
Propose 9 bias-corrected sandwich variance estimators

for CRTs with time-to-event outcomes
under the marginal Cox model

Provide practical recommendations
Develop an R package CoxBcv accessible on CRAN

Introduction 

Marginal Cox proportional hazards model (Wei et al., 1989; Lin, 1994) 
Clustered right-censored time-to-event data 
Hazard ratio as effect measure 
Assume an independence working correlation structure 
Robust sandwich variance estimator (Spiekerman and Lin, 1998) 
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Marginal Cox Proportional Hazards Model 

Statistical model for a parallel-arm CRT 
n: number of clusters 
mi : cluster size for cluster i (i = 1, . . . , n) 
Oij = (Xij , ∆ij , Zij ): observed data triplet 

Xij = min{Tij , Cij }: observed event time, where 
Tij : underlying failure time for the event of interest 
Cij : censoring time 

∆ij : event indicator; ∆ij = 1 if Xij = Tij and ∆ij = 0 if Xij = Cij 
Zij = (Zij1, . . . , Zijp)

′ : a p × 1 vector of baseline covariates 
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Marginal Cox Proportional Hazards Model 

Marginal Cox proportional hazards model 

λij (t|Zij ) = λ0(t) exp 
(
β ′Zij 

)
(1) 

λ0(t): an unspecified baseline hazard function  
β: a p × 1 vector of regression parameters  
Estimate the population-averaged intervention effect 
Usually include only a cluster-level intervention indicator  

Zij : a scalar binary covariate 
β: the population-averaged hazard ratio 
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Marginal Cox Proportional Hazards Model 

Estimate β in model (1) (Wei et al., 1989; Lin, 1994) 
Based on an independence working correlation structure 
An unbiased estimator β∧ solves the estimating equations

U(β) = 
n∑ 

i=1

miΣ
 j=1

∆ij

{
Zij −

S(1)(β; Xij)

S (0)(β; Xij )

}
= 0

where 
S(r)(β; t) = 

∑ n 
i=1 
∑ mi

j=1 Yij (t) exp (β ′Zij ) Z⊗r
ij 

 for r = 0, 1, 2
c⊗0 = 1, c⊗1 = c , c⊗2 = cc ′ for an arbitrary vector c 
Yij (t) = I (Xij ≥ t) : at-risk process 
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Marginal Cox Proportional Hazards Model 

Nij (t) = I (Xij ≤ t, ∆ij = 1): counting process for the failure time 
Breslow-type estimators

cumulative baseline hazard 

∧Λ0(t) = 
n∑ 

i=1 

mi Σ
j=1 

∫ t

0 

dNij (u)∑ n
k=1 

Σmk 
l=1 Ykl (u) exp (β′ Zkl )

= 
n∑ 

i=1 

miΣ
j=1 

 ∫ t 

0

dNij (u) 
S (0)(β; u)

baseline hazard 

∧λ0(t)dt = 
n∑ 

i=1 

miΣ
j=1 

S (0)(β; t)−1dNij (t) 
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Marginal Cox Proportional Hazards Model 

Robust sandwich variance estimator for ∧β
Extension from GEE with non-censored outcomes to the marginal
Cox model (Wei et al., 1989; Spiekerman and Lin, 1998) 
Define the mean-zero martingale-score for each cluster 

Ui (β) = 
miΣ
j=1 

Uij (β) = 
miΣ
j=1 

∫ ∞

0

{
Zij − 

S(1)(β; u)
S (0)(β; u)

}
dMij (u) (2)

where 
Mij (t) = Nij (t) − 

∫ t

0 
Y ′
ij (u)λ0(u) exp(β Zij )du 

is the martingale 
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Marginal Cox Proportional Hazards Model 

Define Ωi (β) = −∂Ui (β)/∂β 
Sandwich variance estimator 

∧Vs = ∧Vm 

(
n∑ 

i=1 

∧Ui ∧U ′ 
i 

) ∧Vm

where 
model-based variance estimator ∧Vm = 

(∑ n 
i=1 
∧Ωi 

)−1 
= (∑ n 

i=1 
∑ mi 

j=1

∫ ∞ 
0 

{ 
S(2)( ∧β;u) 
S (0)(∧β;u) 

− S
(1)( ∧β;u)S(1) ( ∧β;u)′  

S(0)(∧β;u)2 

}
dNij (u

)−1 
)∧Ωi = Ωi (∧β) ∧Ui = Ui (∧β) 
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Marginal Cox Proportional Hazards Model 

Features of ∧Vs 

Unbiased in large samples regardless of the correct specification of
the working independent correlation assumption
Tend to underestimate the variance in small CRTs (n < 30)

inflated type I error rates
under-coverage  

Need small-sample bias corrections  
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Bias Correction based on MR 

Bias correction based on modification of the martingale residual (MR) 
Rewrite the martingale in Eq (2) 

Mij (t; β) = ∧Mij (t; ∧β) − { ∧Mij (t; ∧β) − ∧Mij (t; β)
}

− 
{ ∧Mij (t; β) − Mij (t; β)

}
(3) 

∧M(t, β): baseline hazard estimated by the Breslow-type estimator ∧M(t, ∧β): baseline hazard estimated by the Breslow-type estimator
and β is estimated by ∧β
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Bias Correction based on MR 

Consider a first-order Taylor Series expansion to rewrite Eq (3) 

Mij (t; β) = ∧Mij (t; ∧β) + ∧D ′ 
ij (t; β) ∧Vm

n∑ 
k=1 

mk Σ
l=1 

Ukl (β) 

+ 
 ∫ t 

0 
Yij (u) exp 

(
β ′Zij

) dM(u)

S (0)(β; u)

M(t) = 
∑ n 

i=1 
∑ mi

j=1 Mij (t) 
where

Dij is a gradient matrix 

Recall 

Ui (β) = 
miΣ
j=1 

Uij (β) = 
miΣ
j=1 

∫ ∞

0

{
Zij − 

S(1)(β; u)
S (0)(β; u)

}
dMij (u)
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Bias Correction based on MR 

Bias-corrected version of the estimated martingale-score ∧Ui

∧Ui 
BC = 

{((Ip + 
mi Σ
j=1 

∫ ∞

0 

{
Zij − 

S(1)(β∧; u)
S (0)(∧ β; u)

}
d ∧D ′ 

ij (u; ∧β) ∧Vm

}) ∧Ui){ } ∫Σmi  ∞ S(1) ( )( β∧; u) 
+ Zij − Y ∧′∧ ij (u) exp β Zij00 S ( )(β; u)j=1

 (0 −1× S )(β∧; u) dM∧i•(u)
MR bias-corrected sandwich variance estimator 

∧VMR = ∧Vm

{
nΣ

i=1 

∧Ui
BC 
( ∧Ui 

BC 
)′} ∧Vm
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Bias Corrections Based on Methods for GEE 
Generalize multiplicative bias corrections developed for GEE

Multiplicative bias corrections, following Wang et al. (2021): ∧Vm
∧V0 ∧Vm with 

∧V0 = 
n∑ 

i=1 

Ci ∧Ui ∧U ′
i C

′
i (4) 

Ci : cluster-specific correction matrix for small CRTs 
Determine the form of Ci  
Expand the estimating equations around β∧:

Ui ≈ ∧Ui − ∧Ωi 

(
β − ∧β)

Sum across all clusters and re-arranging terms: 

∧β − β ≈ ∧Vm 

(
n∑ 

i=1 

Ui 

)
Bias-corrected sandwich variance estimation 18 / 43 



Bias Corrections Based on Methods for GEE 

Approximate the covariance of the estimated cluster-specific score: 

E 
( ∧Ui ∧U ′ 

i 

)
≈ 
(
Ip − ∧Ωi ∧Vm

)
Ψi 

(
Ip − ∧Ωi ∧Vm

)′ 
( )∑ ∧ ′ + Ω∧ ∧ ∧ ′ 

i Vm ( Ψj )V mΩi  
j=i 

(5)
̸

Ψi = Cov(Ui ) = E (Ui U ′ 
i ): true covariance of Ui
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Bias Corrections Based on Methods for GEE 

KC bias correction 
Assume Ψi ≈ c × ∧Ωi (Kauermann and Carroll, 2001) 

 
E 
( ∧Ui ∧U ′ 

i 

)
≈ 
(
Ip − ∧Ωi ∧Vm

)
Ψi ≈ Ψi 

(
Ip − ∧Ωi ∧Vm

)′
Motivate Ci = 

(
Ip − ∧Ωi ∧Vm

)−1/2
in Eq (4) 

KC bias-corrected sandwich variance estimator 

∧VKC = ∧Vm

{
nΣ

i=1

(
Ip − ∧Ωi ∧Vm

)−1/2 ∧Ui ∧U ′ 
i 

(
Ip − ∧Vm

∧Ωi

)−1/2
} ∧Vm
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Bias Corrections Based on Methods for GEE 

FG bias correction 
Analogous to Fay and Graubard (2001) 

Ci = diag 
{(

1 − min 
{
r , [∧Ωi ∧Vm]jj 

})−1/2
}
in Eq (4) 

r < 1: a user-defined constant; usually set r = 0.75 

FG bias-corrected sandwich variance estimator 

∧VFG = ∧Vm

[
nΣ

i=1 

diag 
{(

1 − min 
{
r , [∧Ωi ∧Vm]jj 

})−1/2
} ∧Ui ∧U ′

i{( { }) }]
−1/2

× diag 1 − min r , [Ω∧ ∧
i Vm] ∧

jj Vm

Note: when p = 1, ∧VFG = ∧VKC if ∧Ωi ∧Vm does not exceed r 
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Bias Corrections Based on Methods for GEE 

MD bias correction 
Assume the last term of (5) is negligible (Mancl and DeRouen,
2001) 

Ψi ≈ 
(
Ip − ∧Ωi ∧Vm

)−1 ∧Ui ∧U ′ 
i 

(
Ip − ∧Vm

∧Ωi

)−1 

Motivate Ci = 
(
Ip − ∧Ωi ∧Vm

)−1
in Eq (4)  

MD bias-corrected sandwich variance estimator  

∧VMD = ∧Vm

{
nΣ

i=1 

(
Ip − ∧Ωi ∧Vm

)−1 ∧Ui ∧U ′ 
i 

(
Ip − ∧Vm

∧Ωi

)−1
} ∧Vm

Note: ∧VMD often leads to larger variance estimates than ∧VKC
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.

Bias Corrections Based on Methods for GEE 

MBN bias correction 
An additive bias correction, analogous to Morel et al. (2003) 
MBN bias-corrected sandwich variance estimator 

∧VMBN = 
(∑ n

i
 
=  mi − 1 n

)
1∑ n × 

i=1 mi − p n − 1
∧Vs + min 

(
0.5,

p

n − p

)
ϕ∧ ∧Vm (6)

where 

ϕ = max 

{
1, 
(∑ n −i=1 mi  1 n 

i=1 mi − p n − 1

)∧ ∑ n × × trace 

[ ∧Vm 

( 
n∑ 

i=1

U∧i U∧′ 
)]
i 

 

/p

}
 

Advantage of the additive bias correction: 
it ensures a positive-definite covariance matrix (Morel et al., 2003)  
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Hybridize the MR bias correction with either one of the
multiplicative or additive bias-corrections:
replace ∧Ui with ∧UBC

i in ∧VKC , ∧VFG , ∧VMD and ∧VMBN

Hybrid bias-corrected sandwich variance estimators:∧VKCMR , ∧VFGMR , ∧VMDMR and ∧VMBNMR

Hybridizing Bias Corrections 

Hybrid bias corrections 
Survival analysis concerns incompletely observed outcomes
Bias correction may be insufficient when implemented alone 
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Bias-Corrected Sandwich Variance Estimators 

Table 1: A brief summary of different sandwich variance estimators. 

Variance Estimator Label Formula Feature 

∧Vs ROB Ci = Ip 

∧VKC Ip −
( ) 2

 ∧ 1
 Ω∧ − /  

Ci = i Vm

( )−1 
Ci = Ip − Ω∧ ∧

i Vm

KC 

∧V (∑ n ∧ ∧C U U ′  
) 

 i  ∧
m i  C

′
=1  i i i Vm Ci = diag 

{(
min 

{
r , [∧1 − Ω ∧

i Vm ]jj 
}) } 

−1/2∧VFG FG 

∧VMD MD 

∧VMBN MBN c1 ∧Vs + c2 ∧ϕ ∧Vm c1, c2, ∧ϕ defined in Eq (6) 

∧VMR MR Ci = Ip 

∧VKCMR 

∧VFGMR 

∧VMDMR 

∧VMBNMR 

KCMR 

FGMR 

MDMR 

MBNMR 

∧V (∑ n ∧C UBC 
[ ∧

m i=1 UBC 
]′ 

 i i C ′ 
) ∧

i i Vm 

c ∧1 VMR + c ∧2 ϕ ∧Vm 

Ci = 
(
Ip − Ω∧ ∧ )−1/2 

i Vm

Ci = diag 
{(

1 − min 
{
r , [∧ Ωi ∧Vm ]jj 

})−1/2
} 

Ci = 
(
Ip − Ω∧ ∧ )−1 

i Vm

c1, c2, ϕ∧ defined in Eq (6) with ∧Ui replaced by ∧UBC 
i 
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Null hypothesis of no intervention effect H0 : β = 0
Two-sided Wald t-test with n − 1 degrees of freedom

A Numerical Study 

Study description 
Two-arm CRT with equal allocation 
Only 1 covariate in model (1):
a binary cluster-level intervention indicator
(Zi = 1: intervention arm and Zi = 0: control arm) 
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C ∗
ij : random censoring time for individual j in cluster i

exponentially distributed with rate ρ
independent censoring within each cluster

Cij = min{C ∗
ij ,C

†}: true right-censoring time
p0: desired net censoring rate in the control arm
ρ solves P(Tij > Cij |Zi = 0) = p0

p0 = 0.2 or 0.5

A Numerical Study 

Parameter specification, following Zhong and Cook (2015)  
Weibull distribution for cumulative baseline hazard: 
Λ0(t; α) = 

∫ t
0

 
λ0(s; α)ds = (λ0t)

κ and α = (λ0, κ)
 ′  

Administrative censoring time C † = 1 
pa: desired administrative censoring rate for the control group 
λ0 solves P(Tij > C †|Zi = 0) = pa 

pa = 0.2 
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A Numerical Study 

Generate correlated failure times, from the Clayton copula (Clayton and
Cuzick, 1985) 

Si (ti1, . . . , timi ): joint survival distribution for mi (mi ≥ 2) correlated 
observations (Ti1, . . . , Timi ) in a cluster 
Fih (tih | ti1, . . . , ti ,h−1): conditional cumulative distribution function 
for Ti1, . . . , Tih (h = 1, . . . , mi ) 

Fih (tih | ti1, . . . , ti,h−1) ∼ Uniform(0, 1) 
Can generate mi independent Uniform(0, 1) variates 

ui1 = Fi1(t1) 
uih = Fih (tih | ti1, . . . , ti,h−1) for h = 2, . . . , mi 

Solve for ti1 and tih (h = 2, . . . , mi ) 
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n ∈ {6, 10, 20, 30}
Generate mi (i = 1, . . . , n) from a gamma distribution with

mean equal to m ∈ {20, 50, 100}
coefficient of variation (CV) ranging from 0 to 1 by increments of 0.1
mi truncated at 2

A Numerical Study 

Kendall’s τ ∈ {0.01, 0.05, 0.1, 0.25} 
Set β = 0 for assessing the empirical type I error rate  
Fix the nominal type I error rate at 5%  
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A Numerical Study 

5000 data replications for each scenario 
Fit the marginal Cox model for each replicate
Considered 10 variance estimators for the intervention effect: 

uncorrected robust sandwich variance estimator ROB 
9 bias-corrected sandwich variance estimators: 
MR, KC, FG, MD, MBN, KCMR, FGMR, MDMR, MBNMR 

Bias-corrected sandwich variance estimation 31 / 43 



Empirical type I error rate under the null
Acceptable range of empirical type I error rates: (4.4%, 5.6%)

A Numerical Study 

Results of interest 
Percent relative bias of the variance estimators: {

5000∑ 
r=1 

( ∧Vq)r /5000 − VarMC (∧β)
}
/VarMC (∧β) × 100

q: index of the evaluated variance estimator 
( ∧Vq )r : ∧Vq from the r th simulated data replication
VarMC (∧β) = 

∑ 5000 
r=1 (

∧β − 
Σ5000 

r =1 
∧β/5000)2/4999
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A Numerical Study 

Results of interest 
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A Numerical Study 
Percent Relative Bias for p0 = 0.2 and Kendall’s τ = 0.01 

n = 6 n = 10 n = 20 n = 30 
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Figure 1: Percent relative biases of different variance estimators for p0 = 0.2 and τ = 0.01 under
the marginal Cox model. 
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Figure 1: Percent relative biases of different variance estimators for p0 = 0.2 and τ = 0.01 under
the marginal Cox model.
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A Numerical Study 
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Figure 2: Empirical type I error rates of intervention effect tests for p0 = 0.2 and τ = 0.01 under
the marginal Cox model, based on different variance estimators. 

Bias-corrected sandwich variance estimation 34 / 43 



A Numerical Study 
Size for p0 = 0.2 and Kendall’s τ = 0.01 

n = 6 n = 10 n = 20 n = 30 

m
 = 2

0
 

m
 = 1

0
0

 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25

T
y
p
e
 I
 E

rr
o
r 

R
a
te

 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

CV of Cluster Sizes 

ROB KC MD KCMR MDMR 
Variance Estimator 

MR FG MBN FGMR MBNMR 

Bias Correction Type No bias correction Single bias correction Hybrid bias correction 

Line Type Acceptable bound No bias correction Single bias correction Hybrid bias correction 

Figure 2: Empirical type I error rates of intervention effect tests for p0 = 0.2 and τ = 0.01 under
the marginal Cox model, based on different variance estimators. 

Bias-corrected sandwich variance estimation 34 / 43 



A Numerical Study 
Size for p0 = 0.2 and Kendall’s τ = 0.01 

n = 6 n = 10 n = 20 n = 30 

m
 = 2

0
 

m
 = 1

0
0

 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25

T
y
p
e
 I
 E

rr
o
r 

R
a
te

 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

CV of Cluster Sizes 

ROB KC MD KCMR MDMR 
Variance Estimator 

MR FG MBN FGMR MBNMR 

Bias Correction Type No bias correction Single bias correction Hybrid bias correction 

Line Type Acceptable bound No bias correction Single bias correction Hybrid bias correction 

Figure 2: Empirical type I error rates of intervention effect tests for p0 = 0.2 and τ = 0.01 under
the marginal Cox model, based on different variance estimators. 

Bias-corrected sandwich variance estimation 34 / 43 



A Numerical Study 

Summary 
When CV ≤ 0.4: MD performs best 
When CV ≥ 0.5: KCMR performs best, with exceptions under 
n = 6 and CV ≥ 0.8 

seemingly discordant recommendation regarding positive bias and
nominal test size 
variability of KCMR when CV of cluster sizes increases (tendency to
over reject) VS positive bias (tendency to be conservative) 

When n = 6 and CV ≥ 0.8: no bias corrections could lead to close 
to nominal test size 
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A Numerical Study 

Practical recommendations 
Include at least 10 clusters in CRTs with time-to-event outcomes 
Use of MD bias-corrected sandwich variance estimator 

robust to the moderate variation of cluster sizes (CV ≤ 0.4)
Use of KCMR bias-corrected sandwich variance estimator 

under larger variations of cluster sizes 
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Randomization level: health center clinic (cluster)
Equal allocation to the two arms
Consider the subgroup of nonwhite participants

high CV of cluster sizes
application of bias-corrected sandwich variance estimator can lead
to a different conclusion from the standard analysis

Application to the STOP-CRC CRT 

STOP CRC trial (Coronado et al., 2018) 
Two-arm parallel CRT 
Compare 2 strategies: an EHR-embedded program & usual care 
Primary outcome: time to completion of colorectal cancer
screening, administratively censored at 12 months 
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Application to the STOP-CRC CRT 

Subgroup of nonwhite participants 
4543 nonwhite participants in 26 clusters 

2513 (55.32%) females 
mean (standard deviation [SD]) age: 58.72 (6.51) years 

Variable cluster sizes 
range: [8, 1054]
mean (SD): 174.73 (246.95)
CV = 1.41  

Consider a proportional hazards model (1) 
include only a binary cluster-level intervention indicator
compare ROB and bias-corrected sandwich variance estimators 
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Application to the STOP-CRC CRT 

Table 2: Analysis results of the STOP CRC data (for the sub-population of nonwhite). 

Variance Estimator Log of Hazard Ratioa(95% CIb) Hazard Ratio (95% CIb) p-value 

ROB 
MR 
KC 
FG 
MD 

0.699 (0.151, 1.248) 
0.699 (-0.011, 1.410) 
0.699 (-0.018, 1.416) 
0.699 (-0.018, 1.416) 
0.699 (-0.274, 1.672) 

2.012 (1.162, 3.483) 
2.012 (0.989, 4.094) 
2.012 (0.983, 4.120) 
2.012 (0.983, 4.120) 
2.012 (0.761, 5.323) 

0.015 
0.053 
0.055 
0.055 
0.151 

MBN 
KCMR 
FGMR 
MDMR 
MBNMR 

0.699 (0.129, 1.270) 
0.699 (-0.249, 1.647) 
0.699 (-0.249, 1.647) 
0.699 (-0.605, 2.004) 
0.699 (-0.040, 1.438) 

2.012 (1.137, 3.560) 
2.012 (0.780, 5.191) 
2.012 (0.780, 5.191) 
2.012 (0.546, 7.417) 
2.012 (0.961, 4.212) 

0.018 
0.141 
0.141 
0.280 
0.063 

a Estimate of β in model (1) with only one covariate of a binary cluster-level intervention indicator.
b CI: Confidence interval from the Wald t-test with n − 1 degrees of freedom. 
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Summary 

Summary 
Propose 9 bias-corrected sandwich variance estimators for CRTs 
with time-to-event data analyzed through the marginal Cox model 
Conduct a comprehensive simulation study to evaluate proposed
estimators 
Suggest that the Wald t-test with a bias-corrected sandwich
variance estimator can maintain the nominal test size and generate
reliable inferences for as few as 10 clusters 

choice of bias-corrected sandwich variance estimators should take 
the variation of cluster sizes into account 

Develop an R package CoxBcv to implement proposed estimators 
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Summary 

Future work 
Extend to non-independent working correlation structure 
Develop bias corrections for the correlation estimating equations,
similar to the matrix-adjusted estimating equations proposed by
Preisser et al. (2008) 
Generalize our recommendations under the covariate-adjusted
analysis through the marginal Cox model in CRTs 
Extend to recurrent event data and multistate models 

Bias-corrected sandwich variance estimation 43 / 43 



References I 

Caille, A., Tavernier, E., Taljaard, M., and Desmée, S. (2021).
Methodological review showed that time-to-event outcomes are
often inadequately handled in cluster randomized trials. Journal of 
Clinical Epidemiology . 

Clayton, D. and Cuzick, J. (1985). Multivariate generalizations of the
proportional hazards model. Journal of the Royal Statistical Society: 
Series A (General) 148, 82–108. 

Coronado, G. D., Petrik, A. F., Vollmer, W. M., Taplin, S. H., Keast, E. M.,
Fields, S., and Green, B. B. (2018). Effectiveness of a mailed
colorectal cancer screening outreach program in community health
clinics: the stop crc cluster randomized clinical trial. JAMA Internal 
Medicine 178, 1174–1181. 

Fay, M. P. and Graubard, B. I. (2001). Small-sample adjustments for
wald-type tests using sandwich estimators. Biometrics 57,
1198–1206. 



References II 

Fiero, M. H., Huang, S., Oren, E., and Bell, M. L. (2016). Statistical
analysis and handling of missing data in cluster randomized trials: a
systematic review. Trials 17, 1–10. 

Ivers, N., Taljaard, M., Dixon, S., Bennett, C., McRae, A., Taleban, J.,
Skea, Z., Brehaut, J., Boruch, R., Eccles, M., et al. (2011). Impact of
consort extension for cluster randomised trials on quality of reporting
and study methodology: review of random sample of 300 trials,
2000-8. Bmj 343,. 

Kauermann, G. and Carroll, R. J. (2001). A note on the efficiency of
sandwich covariance matrix estimation. Journal of the American 
Statistical Association 96, 1387–1396. 

Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using
generalized linear models. Biometrika 73, 13–22. 

Lin, D. (1994). Cox regression analysis of multivariate failure time data:
the marginal approach. Statistics in Medicine 13, 2233–2247. 



References III 

Mancl, L. A. and DeRouen, T. A. (2001). A covariance estimator for gee
with improved small-sample properties. Biometrics 57, 126–134. 

Morel, J. G., Bokossa, M., and Neerchal, N. K. (2003). Small sample
correction for the variance of gee estimators. Biometrical Journal: 
Journal of Mathematical Methods in Biosciences 45, 395–409. 

Murray, D. M., Pals, S. L., Blitstein, J. L., Alfano, C. M., and Lehman, J.
(2008). Design and analysis of group-randomized trials in cancer: a
review of current practices. Journal of the National Cancer Institute 
100, 483–491. 

Preisser, J. S., Lu, B., and Qaqish, B. F. (2008). Finite sample adjustments
in estimating equations and covariance estimators for intracluster
correlations. Statistics in Medicine 27, 5764–5785. 



References IV 

Preisser, J. S., Young, M. L., Zaccaro, D. J., and Wolfson, M. (2003). An
integrated population-averaged approach to the design, analysis and
sample size determination of cluster-unit trials. Statistics in Medicine 
22, 1235–1254. 

Spiekerman, C. F. and Lin, D. (1998). Marginal regression models for
multivariate failure time data. Journal of the American Statistical 
Association 93, 1164–1175. 

Wang, X., Turner, E. L., Preisser, J. S., and Li, F. (2021). Power
considerations for generalized estimating equations analyses of
four-level cluster randomized trials. Biometrical Journal . 

Wei, L.-J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of
multivariate incomplete failure time data by modeling marginal
distributions. Journal of the American Statistical Association 84,
1065–1073. 



References V 

Zhong, Y. and Cook, R. J. (2015). Sample size and robust marginal
methods for cluster-randomized trials with censored event times. 
Statistics in Medicine 34, 901–923. 



Thank You  
Any questions?  

Manuscript under review  


	Improving sandwich variance estimation formarginal Cox analysis of cluster randomized trials
	Section
	Introduction
	Section
	Marginal Cox Proportional Hazards Model
	Section
	Bias Correction based on MR
	Bias Corrections Based on Methods for GEE
	Hybridizing Bias Corrections
	Bias-Corrected Sandwich Variance Estimators
	Section
	A Numerical Study
	Application to the STOP-CRC CRT
	Section
	Summary
	Future work
	References I
	References II
	References III
	References IV
	References V



