Improving sandwich variance estimation for marginal Cox analysis of cluster randomized trials

Xueqi Wang Duke University School of Medicine

Joint work with: Elizabeth L. Turner, Duke University Fan Li, Yale University

Partially funded by NIH awards: U010D033247 & R01DC020026

Cluster Trials "Special Interest Group" Meeting March 16, 2022

Duke Department of Biostatistics & Bioinformatics Duke University School of Medicine

Introduction

- 2 Marginal Cox Proportional Hazards Model
- 3 Proposed Bias-Corrected Sandwich Variance Estimators
- A Numerical Study
- 5 Application to the STOP-CRC CRT
- 6 Summary

Cluster randomized trials (CRTs)

- Unit of randomization: a cluster of individuals
- Commonly used in public health, education, and social policy

Cluster randomized trials (CRTs)

- Unit of randomization: a cluster of individuals
- Commonly used in public health, education, and social policy

Challenge in CRTs: a limited number of clusters

- Logistical or resource constraints
- Systematic reviews
 - Fiero et al. (2016): from 86 CRTs published between 08/2013 and 07/2014, median number of clusters randomized was 24
 - Ivers et al. (2011): from 285 CRTs published between 2000 and 2008, median number of clusters randomized was 21
- Tend to inflate type I error rates for < 30 clusters (Murray et al., 2008)

Generalized estimating equations (GEE) by Liang and Zeger (1986)

- Account for within-cluster correlations
- Population-averaged interpretation (Preisser et al., 2003)
- Robust sandwich variance estimator (ROB)
 - asymptotically valid inference
 - even when the correlation structure is not correctly specified

Generalized estimating equations (GEE) by Liang and Zeger (1986)

- Account for within-cluster correlations
- Population-averaged interpretation (Preisser et al., 2003)
- Robust sandwich variance estimator (ROB)
 - asymptotically valid inference
 - even when the correlation structure is not correctly specified
- Limitation: ROB has negative finite-sample biases for < 30 clusters
- Bias-corrected sandwich variance estimators
 - Kauermann and Carroll (2001) (abbreviated as KC)
 - Mancl and DeRouen (2001) (abbreviated as MD)
 - Fay and Graubard (2001) (abbreviated as FG)
 - Morel et al. (2003) (abbreviated as MBN)

- Application to small CRTs
- Literature on comparing their finite-sample performances
 - in maintaining valid type I error rates
 - with a continuous, binary or count outcome

- Application to small CRTs
- Literature on comparing their finite-sample performances
 - in maintaining valid type I error rates
 - with a continuous, binary or count outcome
- Limited evaluations for censored time-to-event outcomes
 - Caille et al. (2021): from 186 CRTs from 2013 to 2018, time-to-event outcomes are not uncommon but appropriate statistical methods are infrequently used
 - Fay and Graubard (2001): the only study with a simulation evaluation

Marginal Cox proportional hazards model (Wei et al., 1989; Lin, 1994)

- Clustered right-censored time-to-event data
- Hazard ratio as effect measure
- Assume an independence working correlation structure
- Robust sandwich variance estimator (Spiekerman and Lin, 1998)

Marginal Cox proportional hazards model (Wei et al., 1989; Lin, 1994)

- Clustered right-censored time-to-event data
- Hazard ratio as effect measure
- Assume an independence working correlation structure
- Robust sandwich variance estimator (Spiekerman and Lin, 1998)

Our work

- Propose 9 bias-corrected sandwich variance estimators
 - for CRTs with time-to-event outcomes
 - under the marginal Cox model
- Provide practical recommendations
- Develop an R package CoxBcv accessible on CRAN

Introduction

2 Marginal Cox Proportional Hazards Model

- 3 Proposed Bias-Corrected Sandwich Variance Estimators
- A Numerical Study
- 5 Application to the STOP-CRC CRT

Summary

Statistical model for a parallel-arm CRT

- *n*: number of clusters
- m_i : cluster size for cluster i (i = 1, ..., n)
- - Δ_{ij} : event indicator; $\Delta_{ij} = 1$ if $X_{ij} = T_{ij}$ and $\Delta_{ij} = 0$ if $X_{ij} = C_{ij}$
 - $Z_{ij} = (Z_{ij1}, \dots, Z_{ijp})'$: a $p \times 1$ vector of baseline covariates

Marginal Cox proportional hazards model

$$\lambda_{ij}(t|\boldsymbol{Z}_{ij}) = \lambda_0(t) \exp\left(\beta' \boldsymbol{Z}_{ij}\right) \tag{1}$$

• $\lambda_0(t)$: an unspecified baseline hazard function

- β : a $p \times 1$ vector of regression parameters
- Estimate the population-averaged intervention effect
- Usually include only a cluster-level intervention indicator
 - **Z**_{ij}: a scalar binary covariate
 - β : the population-averaged hazard ratio

Estimate β in model (1) (Wei et al., 1989; Lin, 1994)

- Based on an independence working correlation structure
- An unbiased estimator $\widehat{oldsymbol{eta}}$ solves the estimating equations

$$\boldsymbol{U}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} \Delta_{ij} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\boldsymbol{\beta}; \boldsymbol{X}_{ij})}{\boldsymbol{S}^{(0)}(\boldsymbol{\beta}; \boldsymbol{X}_{ij})} \right\} = 0$$

where

•
$$S^{(r)}(\beta; t) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} Y_{ij}(t) \exp(\beta' Z_{ij}) Z_{ij}^{\otimes r}$$
 for $r = 0, 1, 2$
• $c^{\otimes 0} = 1, c^{\otimes 1} = c, c^{\otimes 2} = cc'$ for an arbitrary vector c
• $Y_{ii}(t) = I(X_{ii} > t)$: at-risk process

Marginal Cox Proportional Hazards Model

• $N_{ij}(t) = I(X_{ij} \le t, \Delta_{ij} = 1)$: counting process for the failure time

- Breslow-type estimators
 - cumulative baseline hazard

$$egin{aligned} \widehat{\Lambda}_{0}(t) &= \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \int_{0}^{t} rac{dN_{ij}(u)}{\sum_{k=1}^{n} \sum_{l=1}^{m_{k}} Y_{kl}(u) \exp{(eta' m{Z}_{kl})} \ &= \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \int_{0}^{t} rac{dN_{ij}(u)}{\mathcal{S}^{(0)}(eta;u)} \end{aligned}$$

baseline hazard

$$\widehat{\lambda}_0(t)dt = \sum_{i=1}^n \sum_{j=1}^{m_i} S^{(0)}(oldsymbol{eta};t)^{-1}d\mathsf{N}_{ij}(t)$$

Robust sandwich variance estimator for $\hat{\beta}$

- Extension from GEE with non-censored outcomes to the marginal Cox model (Wei et al., 1989; Spiekerman and Lin, 1998)
- Define the mean-zero martingale-score for each cluster

$$\boldsymbol{U}_{i}(\beta) = \sum_{j=1}^{m_{i}} \boldsymbol{U}_{ij}(\beta) = \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\beta; u)}{S^{(0)}(\beta; u)} \right\} dM_{ij}(u)$$
(2)

where

$$M_{ij}(t) = N_{ij}(t) - \int_0^t Y_{ij}(u)\lambda_0(u)\exp(eta' oldsymbol{Z}_{ij})du$$

is the martingale

Marginal Cox Proportional Hazards Model

- Define $\Omega_i(\beta) = -\partial U_i(\beta) / \partial \beta$
- Sandwich variance estimator

$$\widehat{\boldsymbol{V}}_{s} = \widehat{\boldsymbol{V}}_{m} \left(\sum_{i=1}^{n} \widehat{\boldsymbol{U}}_{i} \widehat{\boldsymbol{U}}_{i}^{\prime}
ight) \widehat{\boldsymbol{V}}_{m}$$

where

• model-based variance estimator $\widehat{\mathbf{V}}_m = \left(\sum_{i=1}^n \widehat{\Omega}_i\right)^{-1} = \left(\sum_{i=1}^n \sum_{j=1}^{m_i} \int_0^\infty \left\{\frac{\mathbf{S}^{(2)}(\widehat{\beta};u)}{\mathbf{S}^{(0)}(\widehat{\beta};u)} - \frac{\mathbf{S}^{(1)}(\widehat{\beta};u)\mathbf{S}^{(1)}(\widehat{\beta};u)'}{\mathbf{S}^{(0)}(\widehat{\beta};u)^2}\right\} dN_{ij}(u)\right)^{-1}$ • $\widehat{\Omega}_i = \Omega_i(\widehat{\beta})$ • $\widehat{U}_i = U_i(\widehat{\beta})$

Features of \widehat{V}_s

- Unbiased in large samples regardless of the correct specification of the working independent correlation assumption
- Tend to underestimate the variance in small CRTs (*n* < 30)
 - inflated type I error rates
 - under-coverage
- Need small-sample bias corrections

1 Introduction

- 2 Marginal Cox Proportional Hazards Model
- Proposed Bias-Corrected Sandwich Variance Estimators
- A Numerical Study
- 5 Application to the STOP-CRC CRT
- Summary

Bias correction based on modification of the martingale residual (MR) Rewrite the martingale in Eq (2)

$$\begin{split} M_{ij}(t;\beta) &= \widehat{M}_{ij}(t;\widehat{\beta}) - \left\{ \widehat{M}_{ij}(t;\widehat{\beta}) - \widehat{M}_{ij}(t;\beta) \right\} \\ &- \left\{ \widehat{M}_{ij}(t;\beta) - M_{ij}(t;\beta) \right\} \end{split} \tag{3}$$

M(t, β): baseline hazard estimated by the Breslow-type estimator
 M(t, β): baseline hazard estimated by the Breslow-type estimator and β is estimated by β

Bias Correction based on MR

Consider a first-order Taylor Series expansion to rewrite Eq (3)

$$\begin{split} M_{ij}(t;\beta) = &\widehat{M}_{ij}(t;\widehat{\beta}) + \widehat{D}'_{ij}(t;\beta)\widehat{V}_m \sum_{k=1}^n \sum_{l=1}^{m_k} U_{kl}(\beta) \\ &+ \int_0^t Y_{ij}(u) \exp\left(\beta' \boldsymbol{Z}_{ij}\right) \frac{dM(u)}{S^{(0)}(\beta;u)} \end{split}$$

where

•
$$M(t) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} M_{ij}(t)$$

• D_{ii} is a gradient matrix

Recall

$$\boldsymbol{U}_{i}(\boldsymbol{\beta}) = \sum_{j=1}^{m_{i}} \boldsymbol{U}_{ij}(\boldsymbol{\beta}) = \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\boldsymbol{\beta}; u)}{S^{(0)}(\boldsymbol{\beta}; u)} \right\} dM_{ij}(u)$$

Bias Correction based on MR

Bias-corrected version of the estimated martingale-score \widehat{U}_i

$$\begin{split} \widehat{\boldsymbol{U}}_{i}^{BC} &= \left\{ \boldsymbol{I}_{p} + \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\widehat{\boldsymbol{\beta}}; \boldsymbol{u})}{S^{(0)}(\widehat{\boldsymbol{\beta}}; \boldsymbol{u})} \right\} d\widehat{\boldsymbol{D}}_{ij}'(\boldsymbol{u}; \widehat{\boldsymbol{\beta}}) \widehat{\boldsymbol{V}}_{m} \right\} \widehat{\boldsymbol{U}}_{i} \\ &+ \sum_{j=1}^{m_{i}} \int_{0}^{\infty} \left\{ \boldsymbol{Z}_{ij} - \frac{\boldsymbol{S}^{(1)}(\widehat{\boldsymbol{\beta}}; \boldsymbol{u})}{S^{(0)}(\widehat{\boldsymbol{\beta}}; \boldsymbol{u})} \right\} Y_{ij}(\boldsymbol{u}) \exp\left(\widehat{\boldsymbol{\beta}}' \boldsymbol{Z}_{ij}\right) \\ &\times S^{(0)}(\widehat{\boldsymbol{\beta}}; \boldsymbol{u})^{-1} d\widehat{M}_{i\bullet}(\boldsymbol{u}) \end{split}$$

$$\widehat{\boldsymbol{V}}_{MR} = \widehat{\boldsymbol{V}}_{m} \left\{ \sum_{i=1}^{n} \widehat{\boldsymbol{U}}_{i}^{BC} \left(\widehat{\boldsymbol{U}}_{i}^{BC} \right)' \right\} \widehat{\boldsymbol{V}}_{m}$$

Bias Corrections Based on Methods for GEE

Generalize multiplicative bias corrections developed for GEE

■ Multiplicative bias corrections, following Wang et al. (2021): $\hat{V}_m \hat{V}_0 \hat{V}_m$ with

$$\widehat{\boldsymbol{V}}_{0} = \sum_{i=1}^{n} \boldsymbol{C}_{i} \widehat{\boldsymbol{U}}_{i} \widehat{\boldsymbol{U}}_{i}^{\prime} \boldsymbol{C}_{i}^{\prime}$$
(4)

- C_i: cluster-specific correction matrix for small CRTs
- Determine the form of C_i
- Expand the estimating equations around $\widehat{\beta}$:

$$oldsymbol{U}_i pprox \widehat{oldsymbol{\mathcal{U}}}_i - \widehat{oldsymbol{\Omega}}_i \left(oldsymbol{eta} - \widehat{oldsymbol{eta}}
ight)$$

Sum across all clusters and re-arranging terms:

$$\widehat{oldsymbol{eta}} - oldsymbol{eta} pprox \widehat{oldsymbol{V}}_m \left(\sum_{i=1}^n oldsymbol{U}_i\right)$$

Approximate the covariance of the estimated cluster-specific score:

$$E\left(\widehat{\boldsymbol{U}}_{i}\widehat{\boldsymbol{U}}_{i}^{\prime}\right)\approx\left(\boldsymbol{I}_{p}-\widehat{\boldsymbol{\Omega}}_{i}\widehat{\boldsymbol{V}}_{m}\right)\boldsymbol{\Psi}_{i}\left(\boldsymbol{I}_{p}-\widehat{\boldsymbol{\Omega}}_{i}\widehat{\boldsymbol{V}}_{m}\right)^{\prime}$$
$$+\widehat{\boldsymbol{\Omega}}_{i}\widehat{\boldsymbol{V}}_{m}\left(\sum_{j\neq i}\boldsymbol{\Psi}_{j}\right)\widehat{\boldsymbol{V}}_{m}^{\prime}\widehat{\boldsymbol{\Omega}}_{i}^{\prime}$$
(5)

• $\Psi_i = \text{Cov}(U_i) = E(U_i U'_i)$: true covariance of U_i

KC bias correction

Assume $\Psi_i \approx c imes \widehat{\Omega}_i$ (Kauermann and Carroll, 2001)

$$E\left(\widehat{\boldsymbol{U}}_{i}\widehat{\boldsymbol{U}}_{i}^{\prime}\right)\approx\left(\boldsymbol{I}_{p}-\widehat{\boldsymbol{\Omega}}_{i}\widehat{\boldsymbol{V}}_{m}\right)\boldsymbol{\Psi}_{i}\approx\boldsymbol{\Psi}_{i}\left(\boldsymbol{I}_{p}-\widehat{\boldsymbol{\Omega}}_{i}\widehat{\boldsymbol{V}}_{m}\right)^{\prime}$$

- Motivate $\boldsymbol{C}_i = \left(\boldsymbol{I}_p \widehat{\boldsymbol{\Omega}}_i \, \widehat{\boldsymbol{V}}_m\right)^{-1/2}$ in Eq (4)
- KC bias-corrected sandwich variance estimator

$$\widehat{\boldsymbol{V}}_{KC} = \widehat{\boldsymbol{V}}_m \left\{ \sum_{i=1}^n \left(\boldsymbol{I}_p - \widehat{\boldsymbol{\Omega}}_i \, \widehat{\boldsymbol{V}}_m \right)^{-1/2} \widehat{\boldsymbol{U}}_i \, \widehat{\boldsymbol{U}}_i' \left(\boldsymbol{I}_p - \widehat{\boldsymbol{V}}_m \widehat{\boldsymbol{\Omega}}_i \right)^{-1/2} \right\} \, \widehat{\boldsymbol{V}}_m$$

FG bias correction

Analogous to Fay and Graubard (2001)

•
$$\boldsymbol{C}_i = \operatorname{diag}\left\{\left(1 - \min\left\{r, [\widehat{\boldsymbol{\Omega}}_i \, \widehat{\boldsymbol{V}}_m]_{jj}\right\}\right)^{-1/2}\right\}$$
 in Eq (4)

• r < 1: a user-defined constant; usually set r = 0.75

FG bias-corrected sandwich variance estimator

$$\begin{split} \widehat{\boldsymbol{V}}_{FG} &= \widehat{\boldsymbol{V}}_m \left[\sum_{i=1}^n \operatorname{diag} \left\{ \left(1 - \min\left\{ r, [\widehat{\boldsymbol{\Omega}}_i \, \widehat{\boldsymbol{V}}_m]_{jj} \right\} \right)^{-1/2} \right\} \, \widehat{\boldsymbol{U}}_i \, \widehat{\boldsymbol{U}}_i' \\ & \times \operatorname{diag} \left\{ \left(1 - \min\left\{ r, [\widehat{\boldsymbol{\Omega}}_i \, \widehat{\boldsymbol{V}}_m]_{jj} \right\} \right)^{-1/2} \right\} \right] \, \widehat{\boldsymbol{V}}_m \end{split}$$

Note: when p = 1, $\widehat{V}_{FG} = \widehat{V}_{KC}$ if $\widehat{\Omega}_i \widehat{V}_m$ does not exceed r

MD bias correction

Assume the last term of (5) is negligible (Mancl and DeRouen, 2001)

$$\boldsymbol{\Psi}_{i} \approx \left(\boldsymbol{I}_{p} - \widehat{\boldsymbol{\Omega}}_{i} \, \widehat{\boldsymbol{V}}_{m}\right)^{-1} \, \widehat{\boldsymbol{U}}_{i} \, \widehat{\boldsymbol{U}}_{i}^{\prime} \left(\boldsymbol{I}_{p} - \widehat{\boldsymbol{V}}_{m} \widehat{\boldsymbol{\Omega}}_{i}\right)^{-1}$$

- Motivate $\boldsymbol{C}_i = \left(\boldsymbol{I}_p \widehat{\boldsymbol{\Omega}}_i \, \widehat{\boldsymbol{V}}_m\right)^{-1}$ in Eq (4)
- MD bias-corrected sandwich variance estimator

$$\widehat{\boldsymbol{V}}_{MD} = \widehat{\boldsymbol{V}}_{m} \left\{ \sum_{i=1}^{n} \left(\boldsymbol{I}_{p} - \widehat{\boldsymbol{\Omega}}_{i} \widehat{\boldsymbol{V}}_{m} \right)^{-1} \widehat{\boldsymbol{U}}_{i} \widehat{\boldsymbol{U}}_{i}^{\prime} \left(\boldsymbol{I}_{p} - \widehat{\boldsymbol{V}}_{m} \widehat{\boldsymbol{\Omega}}_{i} \right)^{-1} \right\} \widehat{\boldsymbol{V}}_{m}$$

Note: \hat{V}_{MD} often leads to larger variance estimates than \hat{V}_{KC}

MBN bias correction

- An additive bias correction, analogous to Morel et al. (2003)
- MBN bias-corrected sandwich variance estimator

$$\widehat{\boldsymbol{V}}_{MBN} = \left(\frac{\sum_{i=1}^{n} m_i - 1}{\sum_{i=1}^{n} m_i - p} \times \frac{n}{n-1}\right) \widehat{\boldsymbol{V}}_s + \min\left(0.5, \frac{p}{n-p}\right) \widehat{\phi} \widehat{\boldsymbol{V}}_m \quad (6)$$

where

$$\widehat{\phi} = \max\left\{1, \left(\frac{\sum_{i=1}^{n} m_{i} - 1}{\sum_{i=1}^{n} m_{i} - p} \times \frac{n}{n-1}\right) \times \operatorname{trace}\left[\widehat{\boldsymbol{V}}_{m}\left(\sum_{i=1}^{n} \widehat{\boldsymbol{U}}_{i}\widehat{\boldsymbol{U}}_{i}'\right)\right] / p\right\}$$

 Advantage of the additive bias correction: it ensures a positive-definite covariance matrix (Morel et al., 2003) Hybrid bias corrections

- Survival analysis concerns incompletely observed outcomes
- Bias correction may be insufficient when implemented alone

Hybrid bias corrections

- Survival analysis concerns incompletely observed outcomes
- Bias correction may be insufficient when implemented alone
- Hybridize the MR bias correction with either one of the multiplicative or additive bias-corrections: replace Û_i with Û_i^{BC} in Ŷ_{KC}, Ŷ_{FG}, Ŷ_{MD} and Ŷ_{MBN}
- Hybrid bias-corrected sandwich variance estimators: $\hat{V}_{KCMR}, \hat{V}_{FGMR}, \hat{V}_{MDMR}$ and \hat{V}_{MBNMR}

Bias-Corrected Sandwich Variance Estimators

Table 1: A brief summary of different sandwich variance estimators.

Variance Estimator	Label	Formula	Feature
\widehat{V}_{s}	ROB		$C_i = I_p$
$\widehat{m{v}}_{KC}$	KC		$oldsymbol{\mathcal{C}}_i = \left(oldsymbol{I}_p - \widehat{oldsymbol{\Omega}}_i \widehat{oldsymbol{\mathcal{V}}}_m ight)^{-1/2}$
$\widehat{m{v}}_{FG}$	FG	$\widehat{\boldsymbol{V}}_{m}\left(\sum_{i=1}^{n}\boldsymbol{C}_{i}\widehat{\boldsymbol{U}}_{i}\widehat{\boldsymbol{U}}_{i}^{\prime}\boldsymbol{C}_{i}^{\prime} ight)\widehat{\boldsymbol{V}}_{m}$	$oldsymbol{\mathcal{C}}_i = ext{diag} \left\{ \left(1 - \min\left\{ r, [\widehat{oldsymbol{\Omega}}_i \widehat{oldsymbol{V}}_m]_{jj} ight\} ight)^{-1/2} ight\}$
$\widehat{\mathbf{V}}_{MD}$	MD		$oldsymbol{\mathcal{C}}_i = \left(oldsymbol{I}_{oldsymbol{ ho}} - \widehat{oldsymbol{\Omega}}_i \widehat{oldsymbol{\mathcal{V}}}_m ight)^{-oldsymbol{1}}$
$\widehat{\mathbf{V}}_{MBN}$	MBN	$c_{1} \widehat{\boldsymbol{V}}_{s} + c_{2} \widehat{\phi} \widehat{\boldsymbol{V}}_{m}$	$c_{f 1},c_{f 2},\widehat{\phi}$ defined in Eq (6)
$\widehat{\boldsymbol{v}}_{MR}$	MR		$C_i = I_p$
$\widehat{oldsymbol{ u}}_{KCMR}$	KCMR		$oldsymbol{\mathcal{C}}_i = \left(oldsymbol{I}_p - \widehat{oldsymbol{\Omega}}_i \widehat{oldsymbol{\mathcal{V}}}_m ight)^{-1/2}$
$\widehat{oldsymbol{V}}_{FGMR}$	FGMR	$\widehat{\boldsymbol{V}}_{m}\left(\sum_{i=1}^{n}\boldsymbol{C}_{i}\widehat{\boldsymbol{U}}_{i}^{BC}\left[\widehat{\boldsymbol{U}}_{i}^{BC}\right]'\boldsymbol{C}_{i}'\right)\widehat{\boldsymbol{V}}_{m}$	$m{\mathcal{C}}_i = ext{diag} \left\{ \left(1 - \min\left\{ r, [\widehat{m{\Omega}}_i \widehat{m{V}}_m]_{jj} ight\} ight)^{-1/2} ight\}$
$\widehat{\mathbf{v}}_{MDMR}$	MDMR		$oldsymbol{\mathcal{C}}_i = \left(oldsymbol{I}_{oldsymbol{ ho}} - \widehat{oldsymbol{\Omega}}_i \widehat{oldsymbol{\mathcal{V}}}_m ight)^{-oldsymbol{1}}$
$\widehat{oldsymbol{ u}}_{MBNMR}$	MBNMR	$c_1 \widehat{V}_{MR} + c_2 \widehat{\phi} \widehat{V}_m$	$c_{1}, c_{2}, \widehat{\phi}$ defined in Eq (6) with $\widehat{m{U}}_{i}$ replaced by $\widehat{m{U}}_{i}^{BC}$

1 Introduction

- 2 Marginal Cox Proportional Hazards Model
- 3 Proposed Bias-Corrected Sandwich Variance Estimators

A Numerical Study

5 Application to the STOP-CRC CRT

Summary

Study description

- Two-arm CRT with equal allocation
- Only 1 covariate in model (1):
 a binary cluster-level intervention indicator
 (Z_i = 1: intervention arm and Z_i = 0: control arm)

Study description

- Two-arm CRT with equal allocation
- Only 1 covariate in model (1):
 a binary cluster-level intervention indicator
 (Z_i = 1: intervention arm and Z_i = 0: control arm)
- Null hypothesis of no intervention effect $H_0: \beta = 0$
- Two-sided Wald *t*-test with *n* − 1 degrees of freedom

Parameter specification, following Zhong and Cook (2015)

- Weibull distribution for cumulative baseline hazard: $\Lambda_0(t; \alpha) = \int_0^t \lambda_0(s; \alpha) ds = (\lambda_0 t)^{\kappa}$ and $\alpha = (\lambda_0, \kappa)'$
- Administrative censoring time $C^{\dagger} = 1$
- *p_a*: desired administrative censoring rate for the control group

•
$$\lambda_0$$
 solves $P(T_{ij} > C^{\dagger} | Z_i = 0) = p_a$

•
$$p_a = 0.2$$

Parameter specification, following Zhong and Cook (2015)

- Weibull distribution for cumulative baseline hazard: $\Lambda_0(t; \alpha) = \int_0^t \lambda_0(s; \alpha) ds = (\lambda_0 t)^{\kappa}$ and $\alpha = (\lambda_0, \kappa)'$
- Administrative censoring time $C^{\dagger} = 1$
- *p*_a: desired administrative censoring rate for the control group

•
$$\lambda_0$$
 solves $P(T_{ij} > C^{\dagger} | Z_i = 0) = p_a$

• $p_a = 0.2$

- C^{*}_{ii}: random censoring time for individual *j* in cluster *i*
 - exponentially distributed with rate ρ
 - independent censoring within each cluster
- $C_{ij} = \min\{C_{ij}^*, C^{\dagger}\}$: true right-censoring time
- *p*₀: desired net censoring rate in the control arm

•
$$\rho$$
 solves $P(T_{ij} > C_{ij} | Z_i = 0) = p_0$

•
$$p_0 = 0.2 \text{ or } 0.5$$

Generate correlated failure times, from the Clayton copula (Clayton and Cuzick, 1985)

- S_i(t_{i1},..., t_{im_i}): joint survival distribution for m_i (m_i ≥ 2) correlated observations (T_{i1},..., T_{im_i}) in a cluster
- F_{ih} (t_{ih} | t_{i1},..., t_{i,h-1}): conditional cumulative distribution function for T_{i1},..., T_{ih} (h = 1,..., m_i)

•
$$F_{ih}(t_{ih} \mid t_{i1}, \ldots, t_{i,h-1}) \sim \mathsf{Uniform}(0,1)$$

■ Can generate *m_i* independent Uniform(0, 1) variates

•
$$u_{i1} = F_{i1}(t_1)$$

• $u_{ih} = F_{ih}(t_{ih} \mid t_{i1}, \dots, t_{i,h-1})$ for $h = 2, \dots, m_h$

Solve for t_{i1} and t_{ih} ($h = 2, \ldots, m_i$)

- Kendall's $\tau \in \{0.01, 0.05, 0.1, 0.25\}$
- Set $\beta = 0$ for assessing the empirical type I error rate
- Fix the nominal type I error rate at 5%

- Kendall's $\tau \in \{0.01, 0.05, 0.1, 0.25\}$
- Set $\beta = 0$ for assessing the empirical type I error rate
- Fix the nominal type I error rate at 5%
- $n \in \{6, 10, 20, 30\}$
- Generate m_i (i = 1, ..., n) from a gamma distribution with
 - mean equal to $\overline{m} \in \{20, 50, 100\}$
 - coefficient of variation (CV) ranging from 0 to 1 by increments of 0.1
 - *m_i* truncated at 2

- 5000 data replications for each scenario
- Fit the marginal Cox model for each replicate
- Considered 10 variance estimators for the intervention effect:
 - uncorrected robust sandwich variance estimator ROB
 - 9 bias-corrected sandwich variance estimators: MR, KC, FG, MD, MBN, KCMR, FGMR, MDMR, MBNMR

Results of interest

Percent relative bias of the variance estimators:

$$\left\{\sum_{r=1}^{5000} (\widehat{V}_q)_r / 5000 - \mathsf{Var}_{MC}(\widehat{\beta})\right\} / \mathsf{Var}_{MC}(\widehat{\beta}) \times 100$$

• *q*: index of the evaluated variance estimator • $(\hat{V}_q)_r$: \hat{V}_q from the *r*th simulated data replication • $\operatorname{Var}_{MC}(\hat{\beta}) = \sum_{r=1}^{5000} (\hat{\beta} - \sum_{r=1}^{5000} \hat{\beta} / 5000)^2 / 4999$

Results of interest

Percent relative bias of the variance estimators:

$$\left\{\sum_{r=1}^{5000} (\widehat{V}_q)_r / 5000 - \mathsf{Var}_{MC}(\widehat{\beta})\right\} / \mathsf{Var}_{MC}(\widehat{\beta}) \times 100$$

- q: index of the evaluated variance estimator
- $(\widehat{V}_q)_r$: \widehat{V}_q from the *r*th simulated data replication
- $\operatorname{Var}_{MC}(\widehat{\beta}) = \sum_{r=1}^{5000} (\widehat{\beta} \sum_{r=1}^{5000} \widehat{\beta} / 5000)^2 / 4999$

Empirical type I error rate under the null

• Acceptable range of empirical type I error rates: (4.4%, 5.6%)

Percent Relative Bias for $p_0 = 0.2$ and Kendall's $\tau = 0.01$

Figure 1: Percent relative biases of different variance estimators for $p_0 = 0.2$ and $\tau = 0.01$ under the marginal Cox model.

Percent Relative Bias for $p_0 = 0.2$ and Kendall's $\tau = 0.01$

Figure 1: Percent relative biases of different variance estimators for $p_0 = 0.2$ and $\tau = 0.01$ under the marginal Cox model.

Percent Relative Bias for $p_0 = 0.2$ and Kendall's $\tau = 0.01$

Figure 1: Percent relative biases of different variance estimators for $p_0 = 0.2$ and $\tau = 0.01$ under the marginal Cox model.

Size for $p_0 = 0.2$ and Kendall's $\tau = 0.01$

Figure 2: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ and $\tau = 0.01$ under the marginal Cox model, based on different variance estimators.

Size for $p_0 = 0.2$ and Kendall's $\tau = 0.01$

Figure 2: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ and $\tau = 0.01$ under the marginal Cox model, based on different variance estimators.

Size for $p_0 = 0.2$ and Kendall's $\tau = 0.01$

Figure 2: Empirical type I error rates of intervention effect tests for $p_0 = 0.2$ and $\tau = 0.01$ under the marginal Cox model, based on different variance estimators.

Summary

- When $CV \le 0.4$: MD performs best
- \blacksquare When CV \geq 0.5: KCMR performs best, with exceptions under
 - n = 6 and CV ≥ 0.8
 - seemingly discordant recommendation regarding positive bias and nominal test size
 - variability of KCMR when CV of cluster sizes increases (tendency to over reject) VS positive bias (tendency to be conservative)
- When *n* = 6 and CV ≥ 0.8: no bias corrections could lead to close to nominal test size

Practical recommendations

- Include at least 10 clusters in CRTs with time-to-event outcomes
- Use of MD bias-corrected sandwich variance estimator
 - $\bullet\,$ robust to the moderate variation of cluster sizes (CV ≤ 0.4)
- Use of KCMR bias-corrected sandwich variance estimator
 - under larger variations of cluster sizes

Introduction

- 2 Marginal Cox Proportional Hazards Model
- 3 Proposed Bias-Corrected Sandwich Variance Estimators
- A Numerical Study
- 5 Application to the STOP-CRC CRT

Summary

STOP CRC trial (Coronado et al., 2018)

- Two-arm parallel CRT
- Compare 2 strategies: an EHR-embedded program & usual care
- Primary outcome: time to completion of colorectal cancer screening, administratively censored at 12 months

STOP CRC trial (Coronado et al., 2018)

- Two-arm parallel CRT
- Compare 2 strategies: an EHR-embedded program & usual care
- Primary outcome: time to completion of colorectal cancer screening, administratively censored at 12 months
- Randomization level: health center clinic (cluster)
- Equal allocation to the two arms

STOP CRC trial (Coronado et al., 2018)

- Two-arm parallel CRT
- Compare 2 strategies: an EHR-embedded program & usual care
- Primary outcome: time to completion of colorectal cancer screening, administratively censored at 12 months
- Randomization level: health center clinic (cluster)
- Equal allocation to the two arms
- Consider the subgroup of nonwhite participants
 - high CV of cluster sizes
 - application of bias-corrected sandwich variance estimator can lead to a different conclusion from the standard analysis

Subgroup of nonwhite participants

- 4543 nonwhite participants in 26 clusters
 - 2513 (55.32%) females
 - mean (standard deviation [SD]) age: 58.72 (6.51) years
- Variable cluster sizes
 - range: [8, 1054]
 - mean (SD): 174.73 (246.95)
 - CV = 1.41
- Consider a proportional hazards model (1)
 - include only a binary cluster-level intervention indicator
 - compare ROB and bias-corrected sandwich variance estimators

Table 2: Analysis results of the STOP CRC data (for the sub-population of nonwhite).

Variance Estimator	Log of Hazard Ratio ^a (95% Cl ^b)	Hazard Ratio (95% Cl ^b)	<i>p</i> -value
ROB	0.699 (0.151, 1.248)	2.012 (1.162, 3.483)	0.015
MR	0.699 (-0.011, 1.410)	2.012 (0.989, 4.094)	0.053
КС	0.699 (-0.018, 1.416)	2.012 (0.983, 4.120)	0.055
FG	0.699 (-0.018, 1.416)	2.012 (0.983, 4.120)	0.055
MD	0.699 (-0.274, 1.672)	2.012 (0.761, 5.323)	0.151
MBN	0.699 (0.129, 1.270)	2.012 (1.137, 3.560)	0.018
KCMR	0.699 (-0.249, 1.647)	2.012 (0.780, 5.191)	0.141
FGMR	0.699 (-0.249, 1.647)	2.012 (0.780, 5.191)	0.141
MDMR	0.699 (-0.605, 2.004)	2.012 (0.546, 7.417)	0.280
MBNMR	0.699 (-0.040, 1.438)	2.012 (0.961, 4.212)	0.063

^a Estimate of β in model (1) with only one covariate of a binary cluster-level intervention indicator.

^b CI: Confidence interval from the Wald *t*-test with n - 1 degrees of freedom.

Introduction

- 2 Marginal Cox Proportional Hazards Model
- 3 Proposed Bias-Corrected Sandwich Variance Estimators
- A Numerical Study
- 5 Application to the STOP-CRC CRT

Summary

- Propose 9 bias-corrected sandwich variance estimators for CRTs with time-to-event data analyzed through the marginal Cox model
- Conduct a comprehensive simulation study to evaluate proposed estimators
- Suggest that the Wald *t*-test with a bias-corrected sandwich variance estimator can maintain the nominal test size and generate reliable inferences for as few as 10 clusters
 - choice of bias-corrected sandwich variance estimators should take the variation of cluster sizes into account
- Develop an R package **CoxBcv** to implement proposed estimators

Future work

- Extend to non-independent working correlation structure
- Develop bias corrections for the correlation estimating equations, similar to the matrix-adjusted estimating equations proposed by Preisser et al. (2008)
- Generalize our recommendations under the covariate-adjusted analysis through the marginal Cox model in CRTs
- Extend to recurrent event data and multistate models

References I

- Caille, A., Tavernier, E., Taljaard, M., and Desmée, S. (2021). Methodological review showed that time-to-event outcomes are often inadequately handled in cluster randomized trials. *Journal of Clinical Epidemiology*.
- Clayton, D. and Cuzick, J. (1985). Multivariate generalizations of the proportional hazards model. *Journal of the Royal Statistical Society: Series A (General)* **148**, 82–108.
- Coronado, G. D., Petrik, A. F., Vollmer, W. M., Taplin, S. H., Keast, E. M., Fields, S., and Green, B. B. (2018). Effectiveness of a mailed colorectal cancer screening outreach program in community health clinics: the stop crc cluster randomized clinical trial. *JAMA Internal Medicine* **178**, 1174–1181.
- Fay, M. P. and Graubard, B. I. (2001). Small-sample adjustments for wald-type tests using sandwich estimators. *Biometrics* 57, 1198–1206.

References II

- Fiero, M. H., Huang, S., Oren, E., and Bell, M. L. (2016). Statistical analysis and handling of missing data in cluster randomized trials: a systematic review. *Trials* **17**, 1–10.
- Ivers, N., Taljaard, M., Dixon, S., Bennett, C., McRae, A., Taleban, J., Skea, Z., Brehaut, J., Boruch, R., Eccles, M., et al. (2011). Impact of consort extension for cluster randomised trials on quality of reporting and study methodology: review of random sample of 300 trials, 2000-8. *Bmj* 343,.
- Kauermann, G. and Carroll, R. J. (2001). A note on the efficiency of sandwich covariance matrix estimation. *Journal of the American Statistical Association* **96**, 1387–1396.
- Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. *Biometrika* **73**, 13–22.
- Lin, D. (1994). Cox regression analysis of multivariate failure time data: the marginal approach. *Statistics in Medicine* **13**, 2233–2247.

- Mancl, L. A. and DeRouen, T. A. (2001). A covariance estimator for gee with improved small-sample properties. *Biometrics* **57**, 126–134.
- Morel, J. G., Bokossa, M., and Neerchal, N. K. (2003). Small sample correction for the variance of gee estimators. *Biometrical Journal: Journal of Mathematical Methods in Biosciences* **45**, 395–409.
- Murray, D. M., Pals, S. L., Blitstein, J. L., Alfano, C. M., and Lehman, J. (2008). Design and analysis of group-randomized trials in cancer: a review of current practices. *Journal of the National Cancer Institute* **100**, 483–491.
- Preisser, J. S., Lu, B., and Qaqish, B. F. (2008). Finite sample adjustments in estimating equations and covariance estimators for intracluster correlations. *Statistics in Medicine* **27**, 5764–5785.

- Preisser, J. S., Young, M. L., Zaccaro, D. J., and Wolfson, M. (2003). An integrated population-averaged approach to the design, analysis and sample size determination of cluster-unit trials. *Statistics in Medicine* **22**, 1235–1254.
- Spiekerman, C. F. and Lin, D. (1998). Marginal regression models for multivariate failure time data. *Journal of the American Statistical Association* **93**, 1164–1175.
- Wang, X., Turner, E. L., Preisser, J. S., and Li, F. (2021). Power considerations for generalized estimating equations analyses of four-level cluster randomized trials. *Biometrical Journal*.
- Wei, L.-J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. *Journal of the American Statistical Association* 84, 1065–1073.

Zhong, Y. and Cook, R. J. (2015). Sample size and robust marginal methods for cluster-randomized trials with censored event times. *Statistics in Medicine* **34**, 901–923.

Thank You Any questions?

Manuscript under review