
 
 
 

   
     

 

 
 

  
 

 
  

 

  

 
   

 
 

 
 

   
  

   
  

  
 

  
 

  

  
 

  

Frailty Models in Cluster-Randomized 
Clinical Trials 
A working document from the NIH Collaboratory Biostatistics/Study Design Core. This work 
is supported by the National Institutes of Health (NIH) Common Fund, through a cooperative 
agreement (U54 AT007748) from the Office of Strategic Coordination within the Office of the 
NIH Director. The views presented here are solely the responsibility of the authors and do not 
necessarily represent the official views of the National Institutes of Health. 

Background
Frequently, the design of a study involves clusters of individuals who have in common 
some factor that might influence the outcome of interest (for example, the outcomes of 
patients treated at the same clinic might be more similar to each other than to the 
outcomes of patients treated at a different clinic). This design requires consideration of the 
relevant components of variability arising both within and among the clusters. One 
simplifying assumption for the analysis in such a design is that each cluster contributes its
own “random effect” to the outcome and that the distribution of these “random effects” 
follows some known distribution, usually a normal distribution. 

A more complex situation extends this “random effects” logic to the design of a study in 
which the outcome of interest is time-to-event. Time-to-event data are common in clinical 
studies and are generally analyzed through survival models, such as the Cox proportional
hazards model. However, when analyzing clusters of individuals, the models are termed
“frailty” models to incorporate some unobserved differential survival probabilities among
clusters. Commonly, a “shared frailty model” is assumed, whereby the random effect is a 
positive random variable that has a multiplicative effect on the individual hazard. The 
distribution of this random effect is frequently modeled as a Gamma distribution. Power 
calculations for such a study are a level of magnitude more complex than those for random
effects linear or logistic regression models. 

Power calculations in the design of a clinical study often rely on simplifying assumptions in 
order to make the solution tractable. To ensure adequate power, these assumptions tend to
be deliberately conservative and typically cover a range of possible scenarios. When the 
outcome is dichotomous, the calculation frequently assumes a standard logistic regression 
model and includes the treatment as a covariate, possibly adjusting for other covariates.
Statistical power under this scenario is relatively straightforward with the use of 
simulation. However, when the outcome is extended to capture time-to-event rather than a 
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dichotomous event, the estimation of power becomes more complex, especially when
groups of subjects have some common affiliation. 

Next Steps
A question worth investigating is the extent to which the use of the logistic model can be 
considered conservative for calculating statistical power for a time-to-event model. It is
generally the case that a statistical test for treatment effect on a continuous outcome will
be more powerful than the corresponding test applied to the binary outcome that is
constructed by dichotomizing the continuous outcome. It may be that power calculations
based on a logistic regression model would be conservative relative to the actual
calculations based on a time-to- event variable. The question then arises of whether
simplifying power calculations for a frailty model to those of a random-effects logistic
regression model represents a conservative approach. 
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