ACP PEACE: Advance Care Planning: Promoting Effective and Aligned Communication in the Elderly

Angelo Volandes, MD, MPH
Associate Professor of Medicine
Harvard Medical School and Massachusetts General Hospital

Objective

- To test implementation of an advance care planning (ACP) program that combines clinician communication skills training and patient video decision aids
- Focused on patients with advanced cancer and their clinicians in oncology settings

Study design

- Stepped-wedge, cluster randomized trial
- 4500 patients aged 65 years and older with advanced cancer
- 36 oncology clinics in 3 healthcare systems

Outcomes

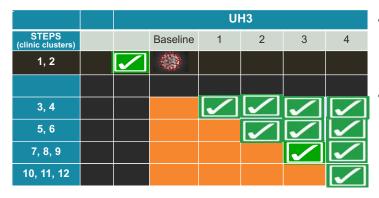
- Advance care plans completion
- Medical orders for resuscitation preferences
- Palliative care consultations
- Hospice use
- Will also characterize detailed patient-centered outcomes in a subgroup of 450 patients, including video declarations of individual preferences

Participating healthcare systems

- Duke Health
- Northwell Health
- Mayo Clinic

Barriers/challenges

- Incomplete and variable content of structured data ACP documents
- Impacts of the COVID-19 pandemic
- Transition to online communication skills training
- Transition to emailing/texting/mailing links to videos
- In-person vs. telehealth visits
- Revised Design



Original Design

		UH3						
STEPS (clinic clusters)	Baseline	1	2	3	4	5	6	
1, 2		/						
3, 4								
5, 6								
7, 8								
9, 10								
11, 12								

Revised Design

- Steps 1-2: ACP rates before and after intervention
- Steps 3-12: Intervention effect post-COVID-19
- COVID-19 effect: Will estimate pre-COVID ACP rate from original baseline plus Step 1; post-COVID ACP rate from Step 2 data. Will also examine trends over time.

Data Challenges

TABLE 3. CHART REVIEW CONTENT OF STRUCTURED DATA ADVANCE CARE PLANNING DOCUMENTS BY CLASSIFICATION

Site 1 (N = 55) ^a	Site 2 (N = 176) ^a	Site 3 (N=132) ^a	Overall (N = 363)
nts (correct)			
14 (25.5)	104 (59.1)	1 (0.8)	119 (32.8)
0(0.0)	17 (9.7)	7 (5.3)	24 (6.6)
0(0.0)	4 (2.3)	0(0.0)	4 (1.1)
13 (23.6)	22 (12.5)	33 (25.0)	68 (18.7)
27 (49.1)	147 (83.5)	41 (31.1)	215 (59.2)
nts, or those	that do not i	represent AC	P (incorrect)
0 (0.0)	4 (2.3)	2 (1.5)	6 (1.7)
0(0.0)	0 (0.0)	29 (22.0)	29 (8.0)
18 (32.7)	1 (0.6)	13 (9.8)	32 (8.8)
2 (3.6)	11 (6.2)	6 (4.5)	19 (5.2)
20 (36.4)	16 (9.1)	50 (37.9)	86 (23.7)
8 (14.5)	13 (7.4)	41 (31.1)	62 (17.1)
	(N=55) ^a tts (correct) 14 (25.5) 0 (0.0) 0 (0.0) 13 (23.6) 27 (49.1) nts, or those 0 (0.0) 0 (0.0) 18 (32.7) 2 (3.6) 20 (36.4)	(N=55) ^a (N=176) ^a ats (correct) 14 (25.5) 104 (59.1) 0 (0.0) 17 (9.7) 0 (0.0) 4 (2.3) 13 (23.6) 22 (12.5) 27 (49.1) 147 (83.5) nts, or those that do not 0 (0.0) 4 (2.3) 0 (0.0) 0 (0.0) 18 (32.7) 1 (0.6) 2 (3.6) 11 (6.2) 20 (36.4) 16 (9.1)	(N=55) ^a (N=176) ^a (N=132) ^a ats (correct) 14 (25.5) 104 (59.1) 1 (0.8) 0 (0.0) 17 (9.7) 7 (5.3) 0 (0.0) 4 (2.3) 0 (0.0) 13 (23.6) 22 (12.5) 33 (25.0) 27 (49.1) 147 (83.5) 41 (31.1) ants, or those that do not represent AC 0 (0.0) 4 (2.3) 2 (1.5) 0 (0.0) 0 (0.0) 29 (22.0) 18 (32.7) 1 (0.6) 13 (9.8) 2 (3.6) 11 (6.2) 6 (4.5) 20 (36.4) 16 (9.1) 50 (37.9)

Solutions/lessons learned

- Online trainings and viewings are highly acceptable
- Hybrid is here to stay (in-person and telehealth)
- Redundancy in intervention exposure (EHR, text, in-person, waiting room, etc.)
- Stepped-wedge design is not the design of choice
- "We argue that the mere popularity and novelty of the SW-CRT should not be a factor in its adoption. In situations when a conventional parallel-CRT is feasible it is likely to be the preferred design."

Ellenberg SS. The Stepped-Wedge Clinical Trial: Evaluation by Rolling Deployment. JAMA. 2018 Feb 13;319(6):607-608. doi: 10.1001/jama.2017.21993.

