ePCT Experimental Design and Analysis

David M. Murray, PhD Associate Director for Prevention Director, Office of Disease Prevention National Institutes of Health (NIH)

Learning goals

 Recognize the analytical challenges and trade-offs of pragmatic study designs, focusing on what PIs need to know—highlighting design and analysis considerations and key decision points.

Design Considerations

Embedded Pragmatic Clinical Trials

Important things to know 600

- Studies that randomize groups or deliver interventions to groups face special analytic challenges not found in traditional individually randomized trials
- Failure to address these challenges will result in an underpowered study and/or an inflated type 1 error rate
- We won't advance the science by using inappropriate methods

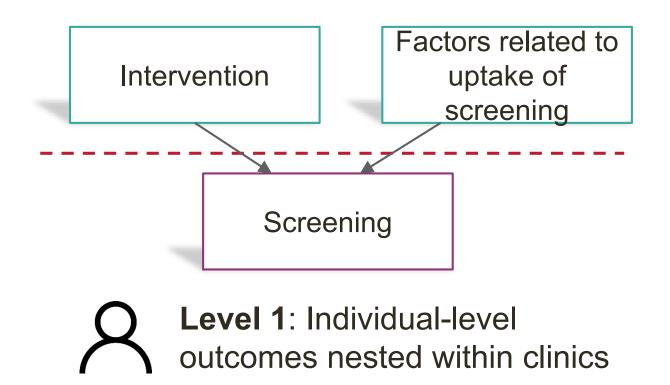
NIH Collaboratory ePCT: STOP CRC

- Strategies and Opportunities to Stop Colorectal Cancer in Priority Populations (STOP CRC)
- 40,000+ patients across 26 clinical sites

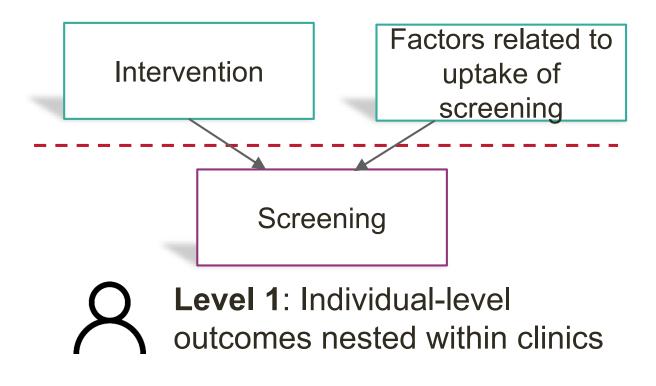
- Intervention
 - Health system-based program to improve CRC screening
 - Applied to clinical site \rightarrow cluster randomization
- Unit of randomization: clinical site
- Two-arm cluster randomized trial (CRT)
 - Also referred to as a group-randomized trial

Reasons to randomize clusters instead of individuals

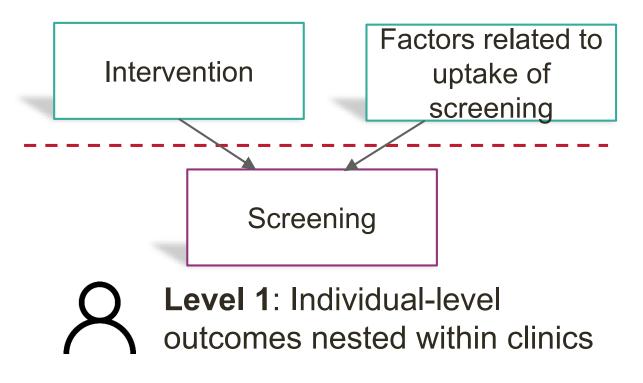
- Intervention targets health care units rather than individuals


 STOP CRC: clinic-based intervention to improve screening
- Intervention targeted at individual risks "contamination"
 - Intervention spills over to members of control arm
 - For example, physicians randomized to new educational program may share knowledge with control-arm physicians in their practice
 - Contamination reduces the observed treatment effect
- Logistically easier to implement intervention by cluster

STOP CRC cluster randomization



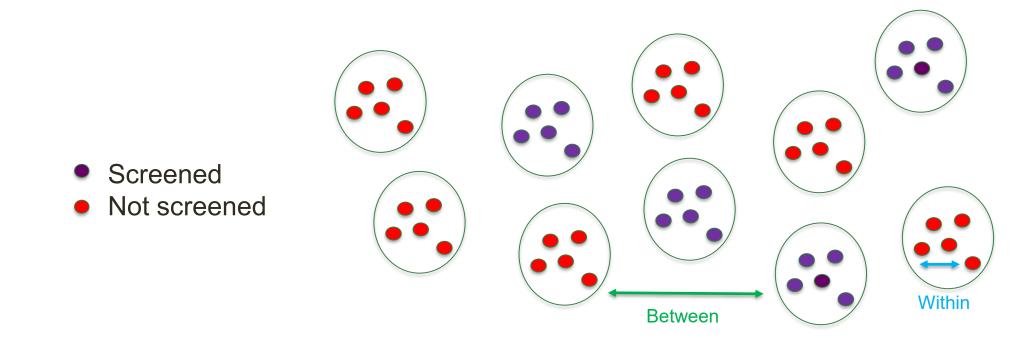
Level 2: Randomization at the level of the clinic (ie, cluster)


STOP CRC cluster randomization

 Individual-level outcomes within same clinic expected to be correlated (i.e., to *cluster*)

STOP CRC cluster randomization

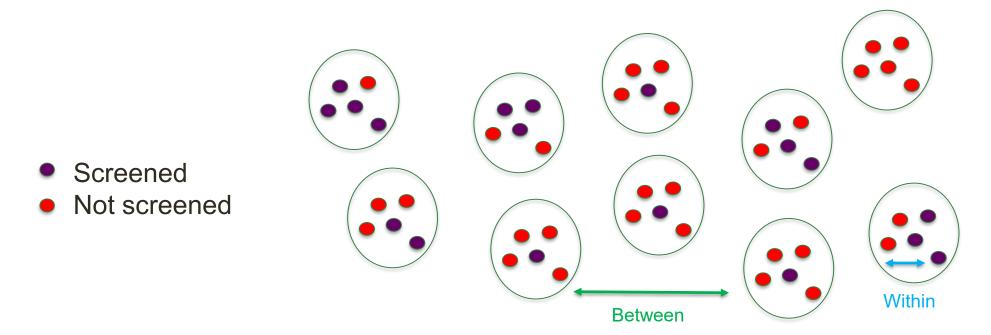
- Individual-level outcomes within same clinic expected to be correlated (i.e., to *cluster*)
- Reduces power to detect treatment effect if same sample size used as under individual randomization



Understanding outcome clustering

- Consider 10 control-arm clinics (i.e., clusters)
- Each with 5 age-eligible patients: ie, who are not up to date with colorectal cancer (CRC) screening
- Binary outcome: not screened (Y/N)

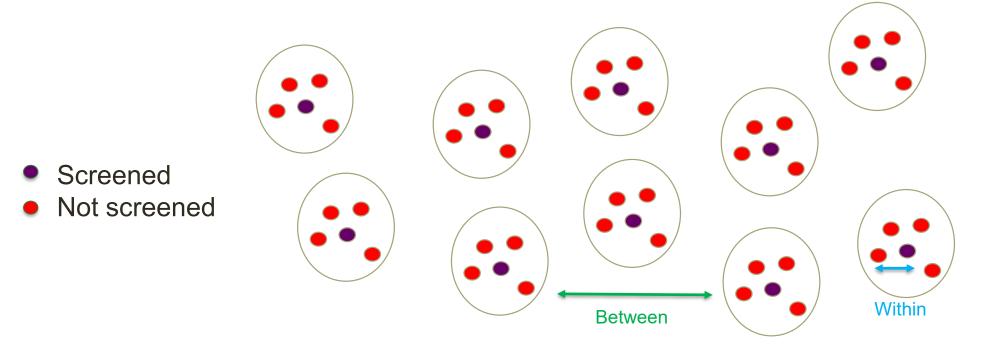
Understanding outcome clustering: complete clustering (ICC =1)



Intracluster correlation coefficient (ICC) =
$$\frac{\sigma_B^2}{\sigma_{Total}^2} = \frac{\sigma_B^2}{\sigma_B^2 + \sigma_W^2} = \frac{\sigma_B^2}{\sigma_B^2} = 1$$
, because $\sigma_W^2 = 0$

 σ_B^2 = between-cluster outcome variance; σ_W^2 = within-cluster outcome variance

Understanding outcome clustering: some clustering (0 < ICC < 1)



ICC =
$$\frac{\sigma_B^2}{\sigma_B^2 + \sigma_W^2}$$
; 0 < ICC < 1, because 0 < σ_W^2 <1 & 0 < σ_B^2 <1

 σ_B^2 = between-cluster outcome variance; σ_W^2 = within-cluster outcome variance

Understanding outcome clustering: no clustering (ICC=0)

ICC =
$$\frac{\sigma_B^2}{\sigma_B^2 + \sigma_W^2}$$
; ICC =0 because σ_B^2 =0 & σ_W^2 >0

 σ_B^2 = between-cluster outcome variance; σ_W^2 = within-cluster outcome variance

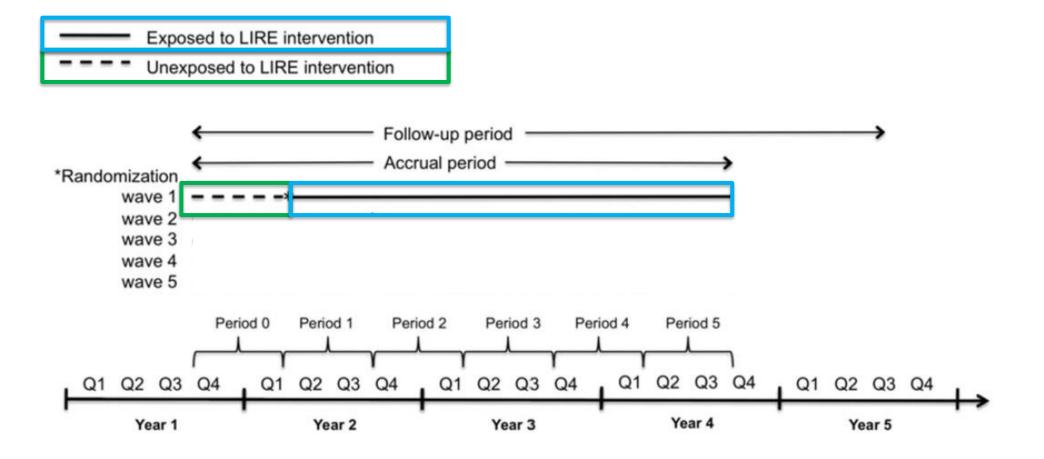
Summary of design issues for CRTs

- All the design features common to RCTs are available to CRTs with the added complication of an extra level of nesting:
 - Cohort and cross-sectional designs
 - Post only, pre-post, and extended designs
 - Single-factor designs and factorial designs
 - A priori matching or stratification
 - Constrained randomization
- The primary threats to internal and statistical validity are well known, and defenses are available.
 - Plan the study to reflect the nested design, with sufficient power for a valid analysis, and avoid threats to internal validity.

Methods for pragmatic trials

- Pragmatic trials do not require a completely different set of research designs, measures, analytic methods, etc.
- As always, the choice of methods depends on the research question.
 - The research question dictates
 - the intervention, target population, and variables of interest,
 - which dictate the setting, research design, measures, and analytic methods.
- Randomized trials will provide the strongest evidence.
 - What kind of randomized trial depends on the research question and how the intervention will be delivered.
- Alternatives to randomized trials are available, but not included in this presentation.

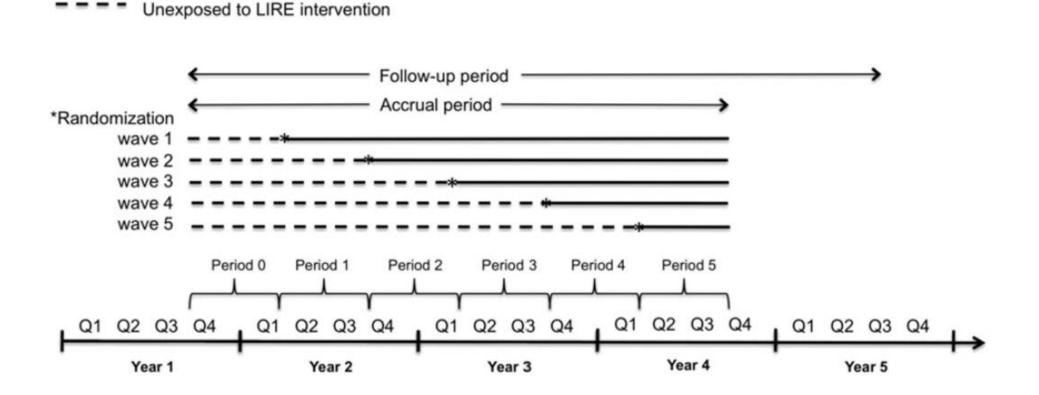
NIH Collaboratory ePCT: LIRE



- Lumbar Imaging With Reporting of Epidemiology (LIRE)
- Goal: Reduce unnecessary spine interventions by providing info on prevalence of normal findings
- Patients of 1700 PCPs across 100 clinics
- Clinic-level intervention \rightarrow cluster randomization
- Unit of randomization: clinic
- Pragmatic trial
 - All clinics will eventually receive intervention
 - Stepped-wedge CRT (SW-CRT)

Jarvik JG et al. Contemp Clin Trials. 2015;45(Pt B):157-163.

NIH Collaboratory ePCT: LIRE

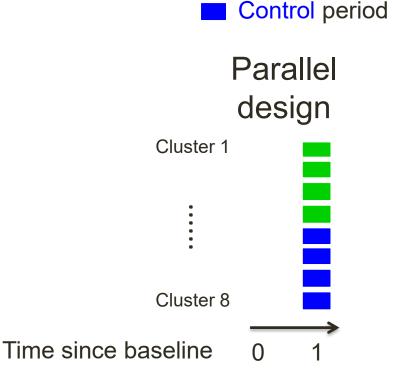


NIH PRAGMATIC TRIALS COLLABORATORY Rethinking Clinical Trials®

Source: Jarvik JG et al. Contemp Clin Trials. 2015;45(Pt B):157-163.

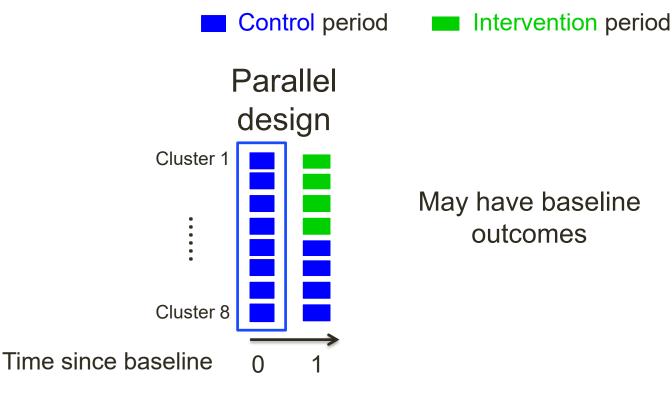
NIH Collaboratory ePCT: LIRE

Exposed to LIRE intervention

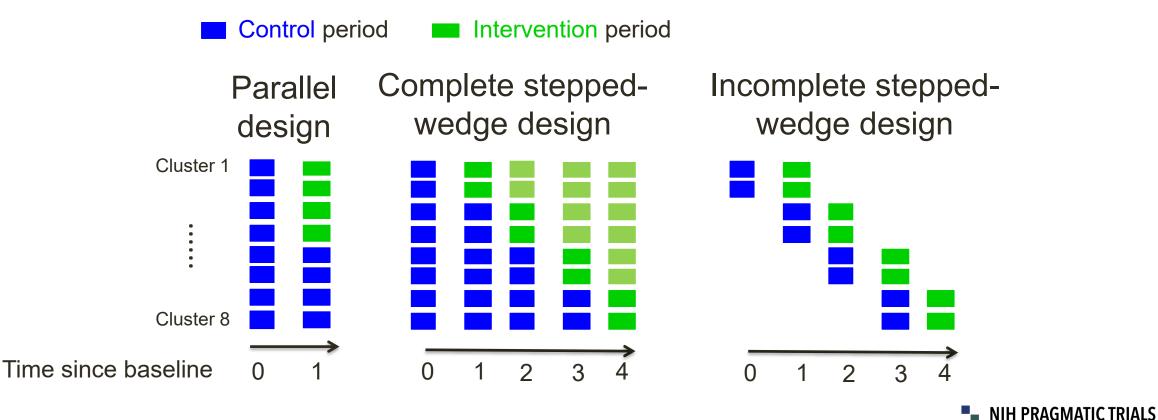


 NIH PRAGMATIC TRIALS COLLABORATORY
 Rethinking Clinical Trials®

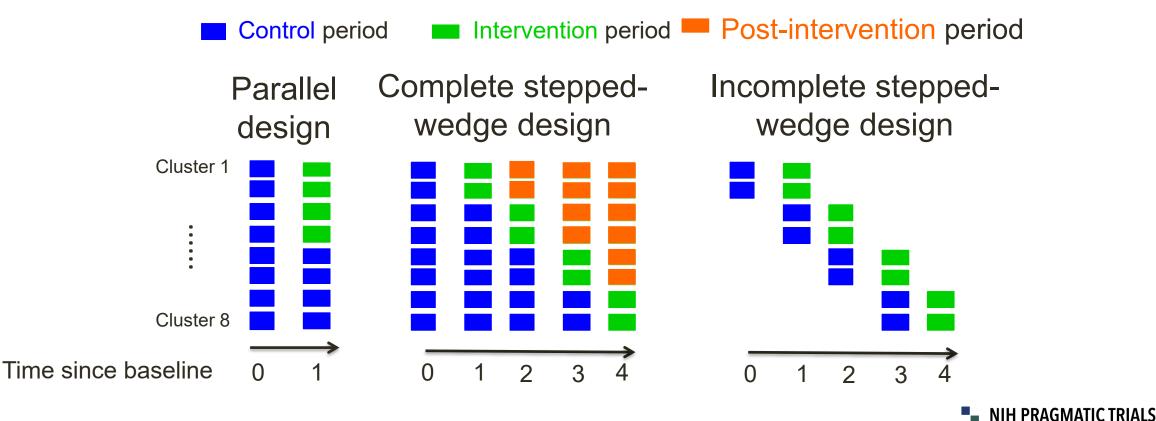
Source: Jarvik JG et al. Contemp Clin Trials. 2015;45(Pt B):157-163.


Examples with 8 clusters: 1-year intervention

Intervention period



Examples with 8 clusters: 1-year intervention



Examples with 8 clusters: 1-year intervention

OLLABORATORY

Examples with 8 clusters: 1-year intervention

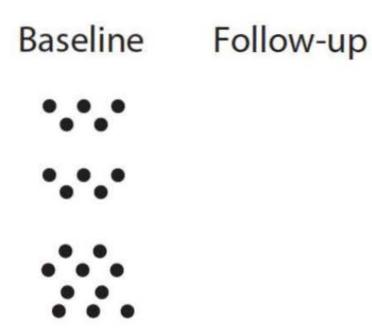
OLLABORATORY

Summary of design issues

- Many design features common to RCTs are available to SW-CRTs:
 - Cohort and cross-sectional designs
 - Single-factor designs and factorial designs
 - A priori matching, stratification, or constrained randomization to create comparable sequences
- The primary threats to internal and statistical validity are well known, and defenses are available.
 - Plan the study to reflect the nested design, with sufficient power for a valid analysis, and avoid threats to internal validity.

NIH Collaboratory ePCT: OPTIMUM

- Optimizing Pain Treatment In Medical settings Using Mindfulness (OPTIMUM)
- Goal: to reduce pain and pharmacologic medications via a group-based mindfulness-based stress reduction (MBSR) program
- Study population: individuals with chronic lower back pain
- Group-based online intervention → groups must be formed by study team
- Unit of randomization: individual → individually-randomized group treatment (IRGT) trial
- Pragmatic trial
 - Diverse settings: Safety-net hospital, FQHCs & academic hospital
 - Healthcare utilization data via EMR


Greco CM et al. Contemp Clin Trials. 2021;109:106545.

ptimum

in Medical Settings Using Mindfulness

Optimizing Pain Treatment

NIH Collaboratory ePCT: OPTIMUM

- Individual measured under intervention
- Individual measured under no intervention

Extracted from Figure 1 in Turner et al. Am J Public Health. 2017;107(6).

Summary of design issues

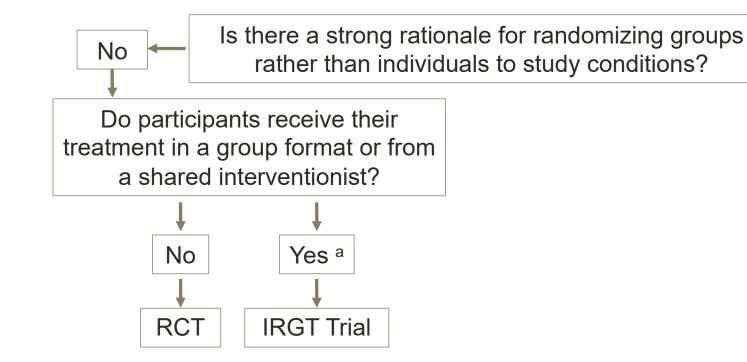
- Many design features common to RCTs are available to IRGTTs:
 - Cohort, but not easy to conceive of a cross-sectional design;
 - Single-factor designs and factorial designs
 - A priori stratification, or other restricted randomization procedures such as minimization to create comparable treatment arms
- The primary threats to internal and statistical validity are well known, and defenses are available.
 - Plan the study to reflect the nested design, with sufficient power for a valid analysis, and avoid threats to internal validity.

Is there a strong rationale for randomizing groups rather than individuals to study conditions?

Is there a strong rationale for randomizing groups rather than individuals to study conditions?

Do participants receive their treatment in a group format or from a shared interventionist?

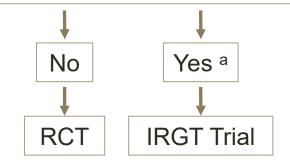
No


Is there a strong rationale for randomizing groups rather than individuals to study conditions?

Do participants receive their treatment in a group format or from a shared interventionist?

No

^a If the intervention is delivered through a physical or a virtual group, or through shared interventionists who each work with multiple participants, positive ICC can develop over the course of the trial.

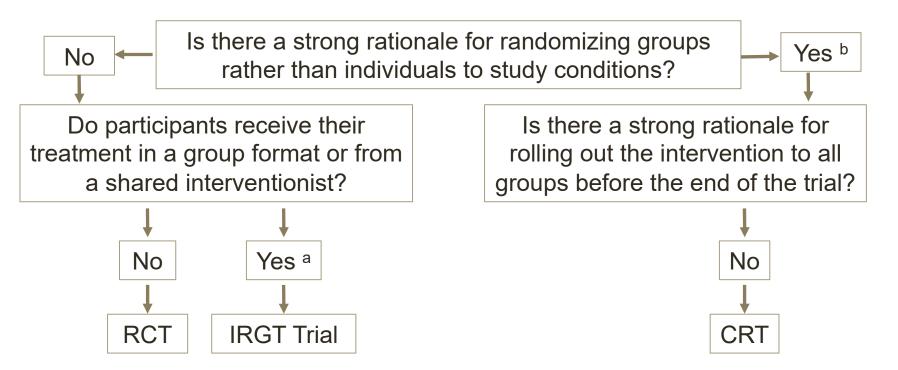


Is there a strong rationale for randomizing groups rather than individuals to study conditions?

→ Yes b

Do participants receive their treatment in a group format or from a shared interventionist?

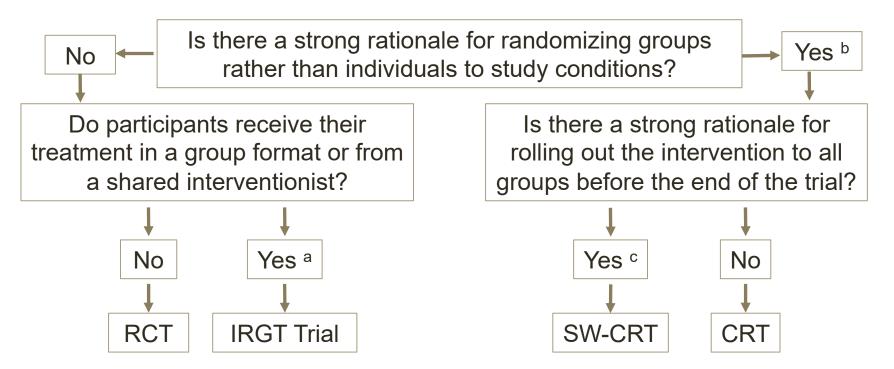
No



Is there a strong rationale for rolling out the intervention to all groups before the end of the trial?

^a If the intervention is delivered through a physical or a virtual group, or through shared interventionists who each work with multiple participants, positive ICC can develop over the course of the trial.

^b There may be logistical reasons to randomize groups (clusters) or it may not be possible to deliver the intervention to individuals without substantial risk of contamination.



^a If the intervention is delivered through a physical or a virtual group, or through shared interventionists who each work with multiple participants, positive ICC can develop over the course of the trial.

^b There may be logistical reasons to randomize groups (clusters) or it may not be possible to deliver the intervention to individuals without substantial risk of contamination.

^a If the intervention is delivered through a physical or a virtual group, or through shared interventionists who each work with multiple participants, positive ICC can develop over the course of the trial.

^b There may be logistical reasons to randomize groups (clusters) or it may not be possible to deliver the intervention to individuals without substantial risk of contamination.

^c There may be legitimate political or logistical reasons to roll out the intervention to all clusters.

Implications of design choice

Randomized controlled trials

- Randomization usually distribute potential confounders evenly, as most RCTS have N>100
- If well executed, confounding is usually not a concern
- Individually randomized group treatment (IRGT) trials
 - There may be less opportunity for randomization to distribute potential confounders evenly, as many IRGT Trials have N<100
 - Confounding can be more of a concern in IRGT Trials than in RCTs

Implications of design choice

- Parallel cluster randomized trials (CRTs)
 - Most CRTs are "small", ie, total # clusters (C) <50
 - Randomization may not evenly distribute potential confounders.
 - Confounding is a concern in CRTs if C<50
 - Can use restricted randomization, eg, constrained randomization
- Stepped wedge CRTs
 - Clusters crossed with study condition, which minimizes confounding except, intervention effects confounded with time
 - SW-CRTs less rigorous than parallel CRTs
 - Only choose when a parallel CRT not appropriate.

The need for these designs

- An RCT is the best comparative design whenever...
 - Individual randomization possible without post-randomization interaction of participants
- An IRGT trial is the best comparative design whenever...
 - Individual randomization is possible but there are reasons to allow postrandomization interaction of participants.
- A CRT is the best comparative design whenever the investigator wants to evaluate an intervention that...
 - Cannot be delivered to individuals without risk of contamination
- An SW-CRT is an alternative to a parallel CRT if...
 - Intervention ibeing rolled out to all groups as part of system-wide implementation
 - Cannot implement intervention in many groups at same time
 - External events are unlikely to affect the outcomes

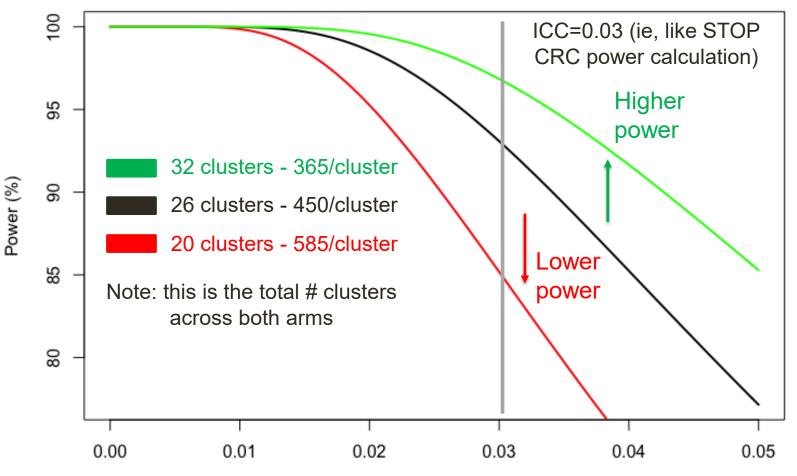
Clustering: Impact on power

- Power and sample size
 - Account for anticipated clustering in CRTs (inc. SW-CRTs) & IRGTTs
 - Inflate RCT sample size
 - Work with statistician to do this correctly
- Use ICC for outcome
 - ICC often 0.01-0.05 in CRTs, larger in IRGT Trials
 - STOP CRC: ICC = 0.03 for primary outcome
 - OPTIMUM: ICC = 0.053 for primary outcome
 - Depends on outcome & study characteristics
 - Different outcome = different ICC, even in same CRT or IRGT Trial
 - More than 1 ICC in longitudinal study like SW-CRT!

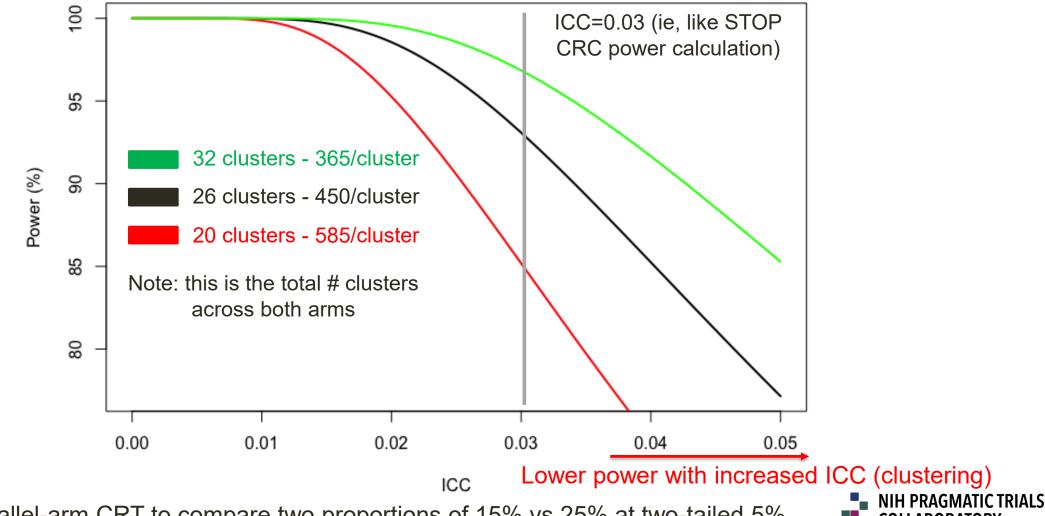
 "Assumed equal numbers of subjects per clinic and equal numbers of clinics (n = 13) per [arm]. In practice, the clinic sizes will not be equal, but since almost all clinics have at least 450 active age-eligible patients, we conservatively use this figure for all sites.

Source: Coronado GD et al. *Contemp Clin Trials*. 2014;38:344-9.

 We based our calculations on the simple paradigm of comparing two binomial proportions with a type I error rate of 5%, and adjusted both for intraclass correlation (ICC) and the reduced degrees-offreedom (n = 24) for the critical values. [...] we expect the ICC to be about .03.



 "Using this figure, we will have very good power (>91%) to detect absolute differences as small as 10 percentage points even if the FIT [fecal immunochemical testing] completion rate in the UC arm is as high as 15% (fecal testing rates for 2013 for usual care clinics was 10%)."



ICC

Power for parallel-arm CRT to compare two proportions of 15% vs 25% at two-tailed 5% significance (alpha) for an **overall sample of 11,700** (ie, like STOP CRC CRT)

Power for parallel-arm CRT to compare two proportions of 15% vs 25% at two-tailed 5% significance (alpha) for an **overall sample of 11,700** (ie, like STOP CRC CRT)

Rethinking Clinical Trials®

Summary: Important things to know

- Studies that randomize groups or deliver interventions to groups face special analytic challenges not found in traditional individually randomized trials
- Failure to address these challenges will result in an underpowered study and/or an inflated type 1 error rate
- We won't advance the science by using inappropriate methods

Resource: The Living Textbook

Visit the Living Textbook of Pragmatic Clinical Trials at www.rethinkingclinicaltrials.org

Welcome to the Living Textbook of pragmatic clinical trials, a collection of knowledge from the NIH Pragmatic Trials Collaboratory. Pragmatic clinical trials present an opportunity to efficiently generate highquality evidence to inform medical decision-making. However, these trials pose different challenges than

traditional clinical trials. The Living Textbook reflects a collection of special considerations and best practices in the design, conduct, and reporting of pragmatic clinical trials.

NIH PRAGMATIC TRIALS COLLABORATORY? (>

What is a

TRAINING RESOURCES >>

NIH resources

- Pragmatic and Group-Randomized Trials in Public Health and Medicine
 - <u>https://prevention.nih.gov/grt</u>
 - 7-part online course on GRTs and IRGTs
- Mind the Gap Webinars
 - <u>https://prevention.nih.gov/education-training/methods-mind-gap</u>
 - Toward Causal Inference in Cluster Randomized Trials: Estimands and Reflection on Current Practice (Fan Li, November 3, 2022)
 - An Introduction to Cross-classified, Multiple Membership, and Dynamic Group Multilevel Models (Don Hedeker, October 20, 2022)
 - Robust Inference for Stepped Wedge Designs (Jim Hughes, May 17, 2022)
- Research Methods Resources Website
 - <u>https://researchmethodsresources.nih.gov/</u>
 - Material on GRTs, IRGTs, SWGRTs and a sample size calculator for each

Recommended reading

- Murray DM et al. Essential ingredients and innovations in the design and analysis of group-randomized trials. Ann Rev Public Health. 2020;41:1-19
- Kenny A et al. Analysis of stepped wedge cluster randomized trials in the presence of a time-varying treatment effect. Stat Med. 2022. PMID: 35774016.
- Kahan BC et al. Estimands in cluster-randomized trials: choosing analyses that answer the right question. Int J Epidemiol. 2022. PMID: 35834775.
- Maleyeff L et al. Assessing exposure-time treatment effect heterogeneity in stepped-wedge cluster randomized trials. Biometrics. 2022. Epub 2022/11/24. PMID: 36416302.
- Brown CH et al. Accounting for Context in Randomized Trials after Assignment. Prevention science : the official journal of the Society for Prevention Research. 2022. PMID: 36083435.

